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A B S T R A C T   

Accurate and spatially continuous land surface soil moisture (SSM) data will greatly benefit analyses of heat 
transfer, energy exchange and agricultural dryness. To obtain spatiotemporally consistent SSM information, five 
machine learning (ML) models, i.e., polynomial regression (PR), ridge regression (RR), lasso regression (LR), 
elastic net regression (EnR) and random forest regression (RfR) models, were generated to map the regional SSM 
in the 0–10 cm soil layer across the study area. Multiple features, including the geographical location, elevation, 
vegetation coverage, soil texture, seasonal patterns and satellite-retrieved SSM product from Fengyun-3C (FY- 
3C), were selected as the input variables for the proposed ML models. In situ SSM measurements from the 
Chinese Automatic Soil Moisture Observation Stations (CASMOS) were used as the reference dataset. The error 
metrics, including the coefficient of correlation (R), mean relative error (MRE), unbiased RMSE (ubRMSE) and 
mean absolute error (MAE), between the measured SSM values and those estimated using the different models 
were calculated. Among those ML models, the RfR model showed the best performance in the training (R =
0.981, MRE = 7.3%, ubRMSE = 0.021 cm3/cm3, and MAE = 0.015 cm3/cm3) and testing (R = 0.789, MRE =
22.2%, ubRMSE = 0.065 cm3/cm3, and MAE = 0.047 cm3/cm3) processes and was applied to map the regional 
SSM values and measure the importance of each input feature. The results indicated that geographical location, i. 
e., latitude (35.84%) and longitude (16.96%), contributed the most to the SSM estimation model, followed by 
elevation (14.88%), vegetation coverage (9.75%), the FY-3C SSM product (8.30%), the soil texture (8.04%) and 
seasonal patterns (6.23%). In addition, the SSM estimations across mainland China matched the spatiotemporal 
patterns of historical precipitation well, which indicated the feasibility of achieving accurate and consistent land 
surface (0–10 cm) soil moisture monitoring results using the established RfR model with appropriately selected 
input features.   

1. Introduction 

The occurrence of drought events, which are usually driven by fac-
tors such as low surface soil moisture (SSM) and high evapotranspiration 
(ET), has rapidly increased in the past several decades in China, causing 
substantial environmental and societal losses (Wu et al., 2019). In recent 
years, SSM has become widely considered a key parameter for moni-
toring agricultural, hydrological and meteorological droughts (Huang 
et al., 2020). In addition, SSM plays an important role in the 

development of weather and precipitation patterns and has been 
extensively adopted to analyze global energy, heat and water exchange 
processes (Crow et al., 2008). Generally, there are two methods to 
calculate the SSM content, i.e., the direct and indirect methods. Among 
them, the gravimetric method, which get the mass of water in the soil 
(known as the oven-dry weight) by measuring the difference between 
the moist soil and the soil dried at 105 ◦C, is frequently utilized to es-
timate soil moisture content as the direct method, as it provides more 
accurate soil moisture data compared to other device-based indirect 
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measurement (Sekertekin et al., 2020). Besides, there are several indi-
rect methods, including the station-based measurement sensors, 
satellite-based remote sensing technology and models that assimilate 
multisource data (Jackson et al., 2008; Singh et al., 2018), for detecting 
the land SSM. 

Continuous station-based in situ SSM measurements are crucial to 
analyze agricultural drought patterns and quantitatively validate the 
reliability of remotely sensed SSM products (Zhu et al., 2019). A large 
number of techniques, including gamma attenuation, frequency domain 
reflectometry (FDR), time domain reflectometry (TDR) and soil heat 
flux, have been employed to measure soil moisture content and profiles 
(Jackson et al., 2008). However, most of the current methods are 
expensive, cumbersome to perform and likely to be affected by envi-
ronmental noise (Vreugdenhil et al., 2013). In the past two decades, 
substantial efforts have been devoted to designing and establishing 
regional and continental soil moisture networks to quantify the accuracy 
of various satellite retrieved and modeled SSM products (Bircher et al., 
2012). These heavily instrumented soil moisture networks, such as the 
international soil moisture network (ISMN), soil climate analysis 
network (SCAN), FLUXNET and the national automatic soil moisture 
network of China, i.e., the Chinese automatic soil moisture observation 
stations (CASMOS), can acquire continuous and widespread moisture 
metrics and providing insight into the validation processes of satellite 
SSM retrievals. Among those networks, CASMOS, with more than 2000 
observation stations densely distributed across all of China, was con-
structed to measure and record hourly soil moisture-related parameters 
at different soil layers (Zhu et al., 2019). Thus, CASMOS is suitable for 
drought monitoring and satellite data validation. 

In recent decades, with the rapid development of remote sensing 
technology, a large number of spatiotemporally continuous SSM prod-
ucts from various satellite platforms have been employed to explore the 
role of land SSM in land-atmosphere interactions and to detect agri-
cultural droughts (Srivastava, 2017). Microwave remote sensing, in both 
its active and passive forms, has been widely recognized as one of the 
most promising SSM monitoring approaches due to its high sensitivity to 
SSM content and ability to monitor SSM dynamics under all weather 
conditions (Sabaghy et al., 2018). Active microwave remote sensing, 
such as synthetic aperture radar (SAR), has the capability of observing 
land SSM over a wide range and at high spatial resolutions (Torres et al., 
2012). Additionally, its revisit time has been significantly reduced from 
35 days or longer to 6–12 days through the Global Monitoring for 
Environment and Security (GMES) Sentinel-1 constellation operated by 
the European Space Agency (ESA). This reduction greatly improves the 
suitability of SAR for hydrological applications (Kornelsen and Couli-
baly, 2013). In general, passive microwave remote sensing has a larger 
number of developed algorithms and a higher temporal resolution but a 
lower spatial resolution than active microwave remote sensing (Wang 
et al., 2020). Currently, a wide variety of SSM products are readily 
available from multiple satellites, such as the soil moisture active pas-
sive (SMAP) mission, the advanced microwave scanning radiometer-2 
(AMSR-2), the soil moisture and ocean salinity (SMOS) mission and 
the FengYun-3 (FY-3) series meteorological satellites. Those missions 
and satellites have been extensively applied to monitor regional SSM 
conditions. 

Despite the advantages of microwave remote sensing in achieving 
regional SSM coverage, its accuracy is likely to be affected by factors 
such as the land surface roughness, vegetation biomass and vegetation 
water content (VWC) (Sabaghy et al., 2018). Many researchers have 
developed various techniques to enhance satellite SSM products to 
better meet the requirements of different applications in recent years 
(Choi and Hur, 2012; Shi et al., 2006). Among those techniques, ma-
chine learning (ML) models, such as back-propagation neural networks 
(BPNNs), the support vector machine (SVM) approach, the random 
forest method, the XGBoost method and general regression neural net-
works (GRNNs), which have high potential for feature selection and 
parameter optimization, have been extensively employed to 

comprehensively estimate and downscale the regional SSM (Wang et al., 
2020; Zhang et al., 2020). Frequently selected features for these ML 
models include the precipitation, vegetation index (VI), land surface 
temperature (LST), ET, digital elevation model (DEM), land cover (LC), 
brightness temperature (BT), albedo, latitude, longitude, soil texture, 
seasonal difference and remotely sensed SSM data (Sabaghy et al., 2018; 
Wang et al., 2020; Zhang et al., 2020). Also, the soil moisture networks 
and in situ measurements have been played an important role as the 
reference datasets during the training and validation of the ML models 
for estimating land surface and root-zone soil moisture at the continental 
scale (Rodriguez-Fernandez et al., 2017). Hence, as one of the most 
promising techniques, ML models with input variables from multiple 
sources should be established and compared to obtain SSM estimations 
with high accuracy. 

This paper aims to achieve accurate and spatiotemporally continuous 
land SSM coverage within the 0–10 cm soil layer by building and 
comparing models with five frequently used ML techniques: polynomial 
regression (PR), ridge regression (RR), lasso regression (LR), elastic net 
regression (EnR) and random forest regression (RfR). For this purpose, 
the CASMOS measurements from 2017 to 2019 were employed as the 
reference dataset. Twenty SSM-related features, including the 
geographical location, vegetation information, remotely sensed SSM 
images, soil texture information and seasonal pattern, were generated 
from multiple data sources to train and validate those ML models. The 
best model (estimator) was selected by calculating the error parameters 
between the in situ SSM measurements and the SSM estimations ob-
tained by different models. Then, the best model was applied to measure 
the relative importance of each input feature and to map the regional 
SSM across the study area. 

2. Study area and datasets 

2.1. Study area 

China is located in the eastern Asia on the west coast of the Pacific 
Ocean with an approximately 9.6 million km2 land area, and its conti-
nental coastline is more than 18,000 km. This region is under the impact 
of the monsoon climate, and the precipitation patterns varies signifi-
cantly from the northwestern to southeastern parts during different 
seasons. In the past several decades, China experiences a rapid increase 
in water use as for the fast development of industry and agricultural 
irrigation. The uneven precipitation and increase of the water use have 
led to a higher frequency of droughts and floods occurrence, especially 
in the northern China (Zhao et al., 2017). Therefore, it is urgent and of 
great importance to achieve accurate and continuous soil moisture 
dataset at the regional scale for China’s drought monitoring and flood 
detection. 

2.2. Datasets 

2.2.1. In situ SSM measurements from CASMOS 
CASMOS was constructed and developed by the Chinese Meteoro-

logical Administration (CMA) and has been widely used as an extensive 
national soil moisture network to monitor agricultural droughts, provide 
early warnings of meteorological disasters, and validate the accuracy of 
remotely sensed SSM products (Zhu et al., 2019). The number of SSM 
data collection stations has gradually increased to 2075 in the past 
decade. These stations are densely and evenly distributed across most 
parts of China, especially in the main agricultural regions, such as the 
North China Plain at elevations lower than 100 m (Fig. 1). Four soil 
moisture parameters, including the soil volumetric water content 
(SVWC), soil weight water content (SWWC), relative soil humidity 
(RSH), and soil available water storage (SAWS), at eight soil depth 
levels, i.e., 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, 40–50 cm, 50–60 
cm, 70–80 cm, and 90–100 cm, are recorded per hour. In this study, 
monthly in situ SVWC measurements at the 0–10 cm depth were 
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produced from the hourly SSM values using the averaging method. 
Then, the mean value of those in situ soil moisture measurements in each 
FY-3C footprint was calculated and adopted as the target datasets for 
training and validating the SSM estimation models. 

2.2.2. Remotely sensed SSM data from FY-3C satellite 
The Fengyun-3C (FY-3C) satellite operated by the CMA has been 

used extensively to obtain global meteorological time series data. Its 
capability for quantitatively detecting the atmosphere, land surface and 
sea surface under all weather conditions has been greatly improved 
compared with those of the FY-1 series satellites, which are China’s first 
generation of polar-orbiting meteorological satellites. The FY-3C satel-
lite is equipped with various instruments, including the microwave 
radiometer imager (MWRI), for collecting BT data and generating 
products, such as global SSM monitoring images at different time in-
tervals and a spatial resolution of 25 km (Wang et al., 2020). The FY-3C 
SSM products are generated and optimized using the Qp model, which 
was built using advanced integral equation (AIE) model simulations of 
microwave emissions (Shi et al., 2006). Compared with the single 
channel SSM retrieval algorithm, both the vertical and horizontal po-
larizations of the X-band (10.65 GHz) were applied in the Qp model to 
decrease the effects of roughness and vegetation coverage. The FY-3C 
SSM data since May 2014 are freely available on the website of 
China’s National Satellite Meteorological Center (NSMC) (satellite. 
nsmc.org.cn/). Here, the monthly FY-3C/MWRI SSM products from 
January 2017 to December 2019 were resized and reprojected to reflect 
the spatiotemporal patterns of the land surface (0–5 cm) soil moisture 
across the study area. 

2.2.3. NDVI from Aqua-MODIS 
The remotely sensed normalized difference vegetation index (NDVI) 

is the most well-developed and widely used approach for monitoring 
vegetation conditions and enhancing the spatial consistency of SSM 
retrievals using microwave remote sensing at the regional scale (Choi 
and Hur, 2012). In this study, the NDVI was selected as the input vari-
able to correct the SSM overestimation issue caused by the vegetation 
coverage when the single FY-3C satellite data was used. For this purpose, 
monthly NDVI products (MYD13C2, collection v006) with 0.1◦ resolu-
tion derived from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) during 2017–2019 were downloaded from the website of the 
National Aeronautics and Space Administration (NASA) (https://la 

dsweb.modaps.eosdis.nasa.gov/). The spatial resolution of MODIS 
NDVI products from the Aqua (afternoon) orbit were resampled from 
0.1◦ to 25 km using the nearest neighbor method to be consistent with 
the FY-3C SSM data. Also, the Aqua-MODIS NDVI products were 
reprojected from the sinusoidal to WGS-84 and the images covering 
China were extracted to reflect the vegetation information and improve 
the SSM estimation accuracy in this study. 

2.2.4. Elevation data from the GMTED2010 
The global multiresolution terrain elevation data for 2010 

(GMTED2010) dataset, with spatial resolutions of 225 m, 450 m, and 1 
km, was jointly released by the U.S. National Geospatial-Intelligence 
Agency (NGA) and the U.S. Geological Survey (USGS). The 
GMTED2010 dataset has been extensively applied to analyze the 
regional terrain characteristics and has proven to be more consistent and 
vertically accurate than the previous GTOPO30 elevation model (Dan-
ielson and Gesch, 2011). Additionally, the GMTED2010 dataset is freely 
available and is convenient to load onto geographic information pro-
cessing platforms, such as the Environment for Visualizing Images 
(ENVI). In this study, the GMTED2010 dataset with a spatial resolution 
of 1 km was resampled to a 25 km spatial resolution using the nearest 
neighbor method. Then, the resampled elevation data were applied to 
map the spatial characteristics of the topography across the study area. 

2.2.5. Soil texture data from the HWSD 
Harmonized World Soil Database (HWSD) was jointly conducted by 

multiple institutions, including the Food and Agriculture Organization 
of the United Nations (FAO), the International Institute for Applied 
Systems Analysis (IIASA), the ISRIC-World Soil Information, the Insti-
tute of Soil Science-Chinese Academy of Sciences (ISSCAS) and the Joint 
Research Centre of the European Commission (JRC) (http://webarchive. 
iiasa.ac.at/Research/LUC/External-World-soil-database/). The HWSD 
includes the global soil map at the 1:5,000,000 scale released by the 
FAO/Unesco, as well as the recent updates of soil information at the 
regional and national scales. The HWSD datasets have been imple-
mented to analyze the runoff and the agricultural modeling applications 
(Jones and Thornton, 2015). In this study, the soil map of China at a 
scale of 1:1 million distributed by the Institute of Soil Science in Nanjing 
was resampled to 25 km and generated as the input variables for soil 
moisture estimation. 

Fig. 1. The spatial distribution of CASMOS stations in the study area.  
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2.2.6. Precipitation data from GPCC 
The spatiotemporal patterns of the SSM are strongly determined by 

precipitation events. Thus, precipitation products are frequently applied 
to validate SSM consistency using satellite data (Wagner et al., 2003; 
Zhu et al., 2019). The Global Precipitation Climatology Centre (GPCC) 
provides long-term precipitation datasets with 1.0◦, 2.5◦, 0.25◦, and 0.5◦

spatial resolutions on its website (https://opendata.dwd.de/climate_e 
nvironment/GPCC/html/download_gate.html). In this study, the 
average monthly precipitation data during 1891–2016 at 0.25◦ were 
generated using the full GPCC dataset (version 2018), which was created 
by Schneider et al. in 2018 (see reference (Schneider et al., 2018)). Then, 
the historical precipitation was mapped to analyze the consistency be-
tween the estimated SSM and the precipitation events and to explain the 
input features (mainly the latitude and longitude) that made great 
contributions to the establishment of the SSM estimation models. 

3. Methodology 

3.1. Machine learning models 

In this study, five ML models, namely the polynomial regression 
(PR), ridge regression (RR), lasso regression (LR), elastic net regression 
(EnR) and random forest regression (RfR), were regarded for SSM esti-
mation. Those ML models present information about the relationship 
between variables such as remotely sensed SSM from FY-3C satellite, 
vegetation coverage, soil texture, geographical location and seasonal 
variation pattern, and the ground SSM measurements. In those models, 
the aforementioned variables were regarded as a function of measured 
SSM as shown in Eq. (1). 

SSMsta = f (SSMFY ,VI,Lat,Lon,Elev, ST, SP) (1)  

where SSMsta is the dependent variable and represents for the SSM 
measurements from observation stations. SSMFY is the SSM retrievals 
from the FY-3C satellite. VI, Lat, Lon, Elev, ST, and SP represent for 
vegetation information, Latitude, Longitude, Elevation, soil texture and 
seasonal pattern respectively. 

In general, those established models with multiple input variables 
are likely to be highly complex and have classic overfitting issues. 
Therefore, the regularization technique is usually adopted to constrain 
the parameters, reduce the overfitting of the model by adding a regu-
larization term to the loss function. A regularization term is a monotonic 
increasing function of the model’s complexity, which indicates a larger 
regularization value with the increasing of the complexity. 

The cross-validation is frequently used to select the model with the 
best performance. There are three steps: 1) randomly divide the given 
data into k subsets of the same size, and then 2) the model is trained 
using the k-1 subsets and tested using the remaining subset, 3) repeat the 
former step for k times and calculate the mean of the k tests. Therefore, 
the regularization technique and the cross-validation method were 
applied in this study to reduce the complexity, optimize the parameters 
and comprehensively assess the performance of PR models and the other 
ML models in the training and testing datasets. 

3.1.1. Polynomial regression model 
Standard and modified polynomial regression (PR) models are 

commonly used in modeling and predicting nonlinear relationships and 
functions between a dependent numeric variable and the values of one 
or several independent variables (Li et al., 2019). Examples of PR 
equations with one (x) and two (x1, x2) independent variables are given 
as follows: 

ŷ = w0 +w1x+w2x2 + ...+wmxm (2)  

ŷ = w0 +w1x1 +w2x2 +w3x2
1 +w4x2

2 +w5x1x2 + ... (3)  

where wj (j = 0, 1, …, m) are regression coefficients and m is the degree 

of the proposed PR model based on Eq. (2). 
The performance of a PR model is commonly evaluated using the 

mean squared error (MSE), which is defined as: 

E(xn,w) =
∑N

n=1
|ŷ(xn,w) − tn|

2 (4)  

where n is the number of input variables and ŷ(xn,w) and tn are the 
predicted and target (actual) values of the dependent variable, respec-
tively. Generally, MSE values become increasingly close to zero with 
increasing model degree (m). However, a PR model with high m values is 
likely to be affected by the overfitting issue, and the regularization and 
cross-validation technique should be applied to optimize the PR model. 

3.1.2. Ridge regression model 
Ridge regression (RR) is an essential concept in data science and has 

been widely used to address multicollinearity and instability problems 
(Zou, 2020). A ridge penalty on the regression coefficients is applied to 
penalize the least squares loss in the RR model as follows: 

E(β) =
∑

(y − Xβ)2
+ λ‖β‖2

2 (5)  

where β is the regression coefficient, λ (λ ≥ 0) is a constant, and y and X 
are the dependent and independent variables of the RR model, 
respectively. 

Generally, the key to conducting ridge regression is the selection of 
an appropriate λ value to balance the variance and bias of the RR model. 
Two commonly used methods of optimizing the λ parameter are the 
ridge trace method and the cross-validation method. Here, the dataset 
was divided into 10 groups for scoring and selecting the best λ value and 
the best estimator using the ‘RidgeCV’ import from the Python library 
‘Scikit-learn’ (Pedregosa et al., 2011). Similarly, the input dataset was 
split into 10 subsets during the cross-validation processes using the other 
ML models in this study. 

3.1.3. Lasso regression model 
The least absolute shrinkage and selection operator (Lasso) was 

introduced by Robert Tibshirani in 1998 (Tibshirani, 1998) and has been 
extensively used for simulating parameters and selecting variables in 
survival analysis. Similar to ridge regression (Eq. (5)), a Lasso penalty, 
which applies the L1 norm instead of the L2 norm, is considered in the 
loss equation of the Lasso regression (LR) model as follows: 

E(β) =
∑

(y − Xβ)2
+ λ‖β‖1 (6) 

Generally, the Lasso regularization used in the LR model makes it 
more appropriate for feature selection than the RR model and provides 
regression results that are easier to interpret. In this study, the values of 
the parameter λ were compared and selected using the ‘LassoCV’ module 
from ‘Scikit-learn’ (Pedregosa et al., 2011). 

3.1.4. Elastic net regression model 
The elastic net regression (EnR) model has attracted wide attention 

in fields such as statistics and machine learning due to its ability to 
achieve good performance under weak regularization (Wang et al., 
2019). Similar to the LR model, the EnR model enables the assignment of 
unimportant parameters to values of zero and thus is suitable for 
extracting useful information from large datasets. The coefficient β is 
estimated by minimizing the loss function of the EnR model, which 
combines the penalty terms of the ridge and Lasso regression models. 
The coefficient β is defined as: 

E(β) =
∑

(y − Xβ)2
+ λ

∑
(1 − α)‖β‖2

2 + α‖β‖1 (7)  

where α (0 < α < 1) is the tuning parameter; the method applies the 
ridge or Lasso regression model when the α value equals 0 or 1, 
respectively. Here, the λ values were determined using the cross- 
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validation method with 10 subsets in Python, i.e., ‘ElasticNetCV’, for 
each varied value of α from 0.01 to 0.99 with 0.01 intervals. 

3.1.5. Random forest regression model 
The random forest concept introduced by Breiman in 2001 (Breiman, 

2001), is an extension of classification and regression trees (CART), and 
it has been well developed and extensively adopted as an ensemble 
learning method to address categorical, continuous and time-to-event 
outcomes. Compared with other ML algorithms, the advantages of the 
random forest method are its high computational speed, the availability 
of feature importance information and its convenient procedures for 
feature selection (Ziegler and Koenig, 2014). In this study, a random 
forest regression (RfR) model was developed to predict continuous 
outputs. 

In general, the steps for building and training an RfR model are 1) 
randomly select a certain number of samples as a subset from the 
training dataset; 2) construct a regression tree (RT) for each subset, 
define the important parameters and determine the best estimator by 
minimizing the MSE as follows: 

min[
∑

xi∈D1(A,s)

(yi − y1)
2
+

∑

xi∈D2(A,s)

(yi − y2)
2
] (8)  

where A is a randomly selected feature, s is the division point, and D1 
and D2 are the datasets partitioned by s. xi and yi are the input and 
predicted values for the RfR model, respectively, and y1 and y2 are the 
averages of the target values in D1 and D2, respectively; 3) calculate the 
predicted value using each RT; and 4) obtain the final predicted value by 
averaging the predictions in step 3) using the following equation: 

P(x) =
∑N

j=1Pj(x)
N

(9)  

where P is the final prediction and N is the number of RTs. 

3.2. Performance criteria metrics 

To quantify the accuracies of FY-3C SSM products and the estimated 
SSM using multivariate machine learning models, four statistical in-
dicators, including the correlation coefficient (R), mean absolute error 
(MAE), unbiased root mean square error (ubRMSE) and mean relative 
error (MRE), were adopted in this study. The R, MAE and MRE were 
calculated by Eqs. (10), (11) and (12) respectively as follows. 

R =

∑N
i− 1(SSMi − SSM)(MSMi − MSM)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i− 1
(SSMi − SSM)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i− 1
(MSMi − MSM)

2

√√
√
√
√

(10)  

MAE =
1
N

∑N

i− 1
(SSMi − MSMi) (11)  

MRE =
1
N

∑N

i− 1

|SSMi − MSMi|

SSMi
× 100% (12)  

where SSMi represents the SSM (cm3/cm3) values retrieved from FY-3C 
or the estimated SSM values, MSMi represents the measured soil mois-
ture (cm3/cm3), SSM represents the average of the FY-3C SSM retrievals 
or the SSM estimates using those ML models of all pixels in the study 
area, MSM represents the average of in situ soil moisture measurements, 
and N represents the total number of valid samples in each month during 
2017–2019. The R values range between [− 1, 1], and a large absolute 
value of R indicates a strong correlation between the SSM product and 
the soil moisture measurements. A positive MAE indicates an over-
estimation, and a negative MAE indicates an underestimation in those 
SSM product. 

The ubRMSE is widely used to evaluate and compare the perfor-
mance of different remotely sensed SSM products. In this study, the 
ubRMSE was adopted to reflect the absolute difference between the 
station-based measurements and the SSM product from FY-3C or SSM 
values estimated by those ML models. The ubRMSE were calculated with 
Eqs. (13)–(15) as follows. 

ubRMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RMSE2 − MD2

√
(13)  

where RMSE can be calculated by Eq. (14), and MD is the abbreviation of 
the mean deviation, which can be calculated by Eq. (15). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(SSMi − MSMi)

2

N

√
√
√
√
√

(14)  

MD =
1
N

∑N

i=1
(SSMi − MSMi) (15)  

4. Results and discussion 

4.1. Consistency assessment between FY-3C retrieved and ground 
measured SSM 

To assess the consistency between the FY-3C SSM retrievals and the 
in situ SSM measurements in different months, the ubRMSE and MAE in 
the months from January to December 2017 were calculated (Fig. 2). 
Fig. 2 indicates that the ubRMSEs between the satellite-retrieved and in 
situ measured SSM in different months ranged between [0.10, 0.13] 
(cm3/cm3), and the errors in June, July, August, September and 
December were higher than those in the other months. The ubRMSEs 
tended to gradually decrease in spring, increase to above 0.12 cm3/cm3 

from June to September, and then slightly decrease in October and 
November. The MAEs in most of the months were negative, especially in 
months from January to March, which were lower than − 0.10 cm3/cm3. 
These results demonstrated a significant underestimation of SSM in the 
FY-3C satellite data in those months. However, the MAEs in July, August 
and September were positive, which indicated that the retrieved SSM 
values were generally higher than the in situ measured SSM values, 
especially in August. 

According to Fig. 2, the SSM values from the FY-3C satellite data 
were obviously overestimated in August and underestimated in 
February, respectively. Here, the difference values between the FY-3C 
and the in situ SSM values were mapped as shown in Fig. 3. Fig. 3(a) 
indicated that the FY-3C retrieved SSM values were much lower than the 
soil moisture measurements at most of the meteorological stations 
across the study area in February 2017, especially in the southern cen-
tral part of the study region, where the differences between the satellite 
retrieved and ground measured SSMs were lower than − 0.20 cm3/cm3. 
The stations with overestimated SSM values were distributed sporadi-
cally in the southwestern study area. However, the SSM values were 
most overestimated using the FY-3C satellite data in August. This was 
especially true in areas with high vegetation coverage, such as the North 
China Plain and Northeast China, where the intensively planted corn 
was at its heading-milk stage in August (Fig. 3(b)). Therefore, the SSM 
estimation accuracy using the FY-3C satellite data was closely related to 
the vegetation coverage, the seasonal characteristics, as well as the 
geographical location. 

4.2. Establishment of machine learning models for land SSM estimation 

In this study, twenty features, including the FY-3C SSM, MODIS 
NDVI, months from January to December, latitude, longitude, elevation 
and soil separates including the clay, sand and silt, were selected as the 
input variables for five ML models (PR, RR, LR, EnR and RfR), to achieve 
accurate land surface soil moisture at the regional scale. The dataset 
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during the years 2017–2019 was divided into a training dataset 
(2017–2018, 68.3%) and a testing dataset (2019, 31.7%). The training 
and testing error metrics (R, ubRMSE, MRE and MAE) of those models 
were calculated pixel-by-pixel and shown as Table 1. According to 
Table 1, among all of the models, the RfR model showed the best per-
formance in the training (R = 0.981, MRE = 7.3%, ubRMSE = 0.021 
cm3/cm3, and MAE = 0.015 cm3/cm3) and testing (R = 0.789, MRE =
22.2%, ubRMSE = 0.065 cm3/cm3, and MAE = 0.047 cm3/cm3) pro-
cesses, followed by the RR and PR models, whose R values were 
approximately 0.61 and 0.57 in the training and testing processes, 
respectively. The performance of the EnR and LR models was relatively 
poor in this study, with training and testing R values of approximately or 
lower than 0.50. 

To further evaluate the performance of the RfR model at the regional 
scale, the SSM data from the ground observations, the FY-3C retrievals, 
as well as the SSM estimations using the RfR and RR models with a 
spatial resolution of 25 km in January 2017 were mapped and shown in 
Fig. 4. It is obvious that the measured SSM values around the purple 
circle were above 0.25 cm3/cm3 (Fig. 4(a)). However, those values were 
greatly underestimated by the FY-3C satellite data in this region (Fig. 4 
(b)). According to Fig. 4(c) and Fig. 4(d), the estimations using RR and 
RfR models were more consistent with the in situ SSM measurements 
than the pure satellite data. Moreover, the RfR model was able to present 
more spatial details in its monitoring results compared with the RR 
model. According to Fig. 4(a) and Fig. 4(b), the pixel values by the FY-3C 
satellite were apparently higher than their measurements in the orange 

Fig. 2. The ubRMSE and MAE between the measured SSM and FY-3C SSM in different months.  

Fig. 3. Maps of the difference between the measured and the FY-3C retrieved SSM in February and August 2017.  

Table 1 
Performance of five machine learning models.  

Model Parameter PR RR LR EnR RfR 

Train Test Train Test Train Test Train Test Train Test 

R  0.608  0.572  0.606  0.571  0.485  0.478  0.520  0.509  0.981  0.789 
MRE (%)  27.7  29.9  27.7  29.9  30.8  32.5  29.8  31.4  7.3  22.2 
ubRMSE (cm3/cm3)  0.080  0.087  0.081  0.086  0.090  0.094  0.087  0.092  0.021  0.065 
MAE (cm3/cm3)  0.063  0.068  0.063  0.068  0.072  0.075  0.069  0.073  0.014  0.047  
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circles, and the overestimation issue was significantly improved in the 
SSM images estimated using the RR and RfR models (Fig. 4(c), Fig. 4(d)). 
To conclude, the SSM products estimated by the RR and RfR models 
were more consistent with the CASMOS measurements than the FY-3C 

satellite retrievals. These results indicated the feasibility of applying 
the proposed ML models with multiple and appropriate input features. 
In this study, the RfR model, which achieved the highest accuracy 
among the five models (Table 1), was used to estimate the regional land 

Fig. 4. Comparison between the measured, FY-3C retrieved and estimated SSM using the RR and RfR models in January 2017.  

Fig. 5. The absolute errors of the satellite-based, in situ measured and estimated SSM values.  
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surface soil moisture in the study area. Besides, the importance of those 
features was measured by RfR model to enhance the interpretability of 
the established model and its regression results. 

To quantitatively assess the performance of the RR and RfR models, 
the absolute errors between the in situ measurements, the FY-3C re-
trievals, as well as the SSM estimations using the RR and RfR models, 
were calculated site-by-site and depicted as Fig. 5. The results showed 
that both RfR and RR models demonstrated a good performance for 
estimating the SSM values, with their median values of the absolute 
errors approximating to 0.0 cm3/cm3. Additionally, the distribution 
ranges of the RR errors between the 25% (Q1) and 75% (Q3) quantiles 
([-0.05, 0.05]) were wider than those for the RfR model, whose absolute 
errors between Q1 and Q3 were distributed quite close to 0. The results 
indicated that the ML models with multiple inputs, especially the RfR 
model, were suitable and promising approaches for achieving SSM es-
timations with high accuracy. 

4.3. The importance of input features in the RfR model 

The importance of each input feature was calculated using the RfR 
model and shown in Fig. 6. Generally, geographical location played the 
most important role in the comprehensive SSM estimation, and the 
proportions of the total importance made up by latitude and longitude 
were 35.84% and 16.96%, respectively. In addition to the geographical 
location, the elevation was also highly relevant to the SSM, occupying a 
proportion of 14.88%, followed by the vegetation coverage as reflected 
by the MODIS NDVI, with a proportion of 9.75%. The FY-3C satellite 
data, soil texture information and the seasonal variation characteristics 
contributed 8.30%, 8.04% and 6.23% to the RfR model for estimating 
the regional SSM in the study area, respectively. To be specific, the soil 
texture data included the proportions of the clay, sand and silt, which 
contributed 2.07%, 2.97% and 3.00% to the RfR model respectively. 
Regarding to the seasonal variation characteristics, i.e., the importance 
of twelve months from January to December, the importance of the 
months from May to November were 0.60%, 0.58%, 0.56%, 0.72%, 
0.64%, 1.07% and 0.50% respectively, which was slightly higher than 
that of the months from December to April, whose proportions were 
0.34%, 0.20%, 0.24%, 0.34% and 0.43% respectively. 

4.4. Results of monitoring the regional SSM using the RfR model 

In this study, the RfR model was adopted to monitor the monthly 
land SSM pixel-by-pixel in the study area. The multisource input features 
of RfR model included latitude, longitude, elevation, MODIS NDVI, FY- 
3C SSM product, soil separates and seasonal differences, i.e., the months 
from January to December. The estimated SSM images in China from 
January 2017 to December 2017 were mapped as shown in Fig. 7. Ac-
cording to Fig. 7(a)–(l), the spatial distribution of the SSM images in 
different months showed a similar pattern, with the SSM values gradu-
ally increasing from northwestern to southeastern China. The 

northwestern part of the study area with the SSM values lower than 0.20 
cm3/cm3 was much drier than the southern and northeastern parts, 
where the SSM values were greater than 0.30 cm3/cm3. Regarding the 
temporal variation characteristics, the proportion of dry areas in the 
north, such as the North China Plain, slightly increased from April to 
June and then decreased from July to September 2017. In contrast, the 
areas with SSM values lower than 0.25 cm3/cm3 in the southern region 
gradually increased from July 2017 and then became wetter since 
September 2017. These results matched the spatial and seasonal pre-
cipitation patterns of the study area well (Gao et al., 2020), indicating 
that the established RfR model with the selected input features provided 
accurate and consistent land SSM monitoring results. 

4.5. Discussion 

4.5.1. The importance of the soil moisture ground measurements 
The integration of satellite images, in situ soil moisture data and ML 

models is a promising method to achieve accurate and consistent land 
surface soil moisture data at the regional scale. In this study, the volu-
metric soil moisture values at the 0–10 cm level measured by the CAS-
MOS stations were employed as the reference dataset for the 
establishment and validation of the ML models. The large number of in 
situ soil moisture measurements from more than 2000 meteorological 
stations across the study area provided massive training and testing 
samples for the SSM estimation models and therefore played an 
important role in this study. Although the calibrated in situ measure-
ments were crucial and useful, their spatial resolution (point-scale) was 
quite different from the satellite observations. Field investigations could 
be conducted in the future to improve the reference datasets and opti-
mize the current method. 

4.5.2. The high correlation between the precipitation patterns and the SSM 
distribution monitored by the established RfR model 

The present study applied five frequently used machine learning 
methods to estimate the land surface (0–10 cm) soil moisture in the 
study area. More input features were considered and more reliable and 
interpretable results were achieved compared with the authors’ former 
research (Wang et al., 2020). For example, the established RfR model, 
which achieved the best performance here, was employed to measure 
the importance of each input feature. The results demonstrated a high 
correlation between the geographical location and the distribution of 
the in situ measurements. This is likely to be caused by the gradually 
increasing rainfall with decreasing latitude and increasing longitude 
(Fig. 8) under the influence of the monsoonal climate. The importance of 
the remotely sensed SSM retrieved from the FY-3C satellite was 8.30%, 
which was lower than the latitude, longitude, elevation and vegetation 
information. The possible reason is that the soil levels detected by the 
satellite (0–5 cm) and the in situ sensors (0–10 cm) were mismatched, 
thus resulting in significant differences between the satellite-retrieved 
and in situ-measured SSM values. 

4.5.3. Additional features and models to be considered in the future 
research 

Although the current results indicated the feasibility of the ML 
models with multiple inputs from various data sources for achieving 
reliable and consistent SSM estimates, the models can be further trained 
to achieve wider and more accurate estimating results with additional 
related features, such as the precipitation and land cover classifications, 
as inputs in future research. The RfR model, as a type of ensemble 
learning method, has proven its suitability and superiority for regional 
SSM estimation compared with the other methods. To extend the current 
research, more ensemble ML models, as well as the various deep 
learning approaches, such as convolutional neural networks, should be 
further developed. Accordingly, the number of the samples needs to be 
further increased to obtain the full potential of those approaches. 
Moreover, the models established in this study are only applicable in a Fig. 6. Features importance generated for the RfR model.  
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certain region, and their input features and main parameters would need 
to be adjusted to employ them for SSM monitoring in other regions. 

5. Conclusions 

The consistency assessment between the in situ measured and the 
remotely sensed SSM indicated a relatively high SSM monitoring error 
using FY-3C satellite data during different months (ubRMSE greater 
than 0.10 cm3/cm3), which indicated that it is insufficient to achieve 
more accurate SSM monitoring results based on the single remotely 
sensed data source. Multiple features, including the remotely sensed 
SSM from the FY-3C satellite, the vegetation information represented 
with MODIS NDVI, the seasonal characteristics, the soil information 
from HWSD and the in situ measurements from CASMOS, were selected 
as the inputs for five ML models to obtain accurate and consistent SSM 
estimations at the regional scale. Among those proposed ML models, the 

ensemble learning method RfR achieved the best performance during 
both the training (R = 0.981, MRE = 7.3% and ubRMSE = 0.021 cm3/ 
cm3) and testing (R = 0.789, MRE = 22.2% and ubRMSE = 0.065 cm3/ 
cm3) processes, followed by the RR and PR models. Additionally, the 
SSM monitoring images obtained using the RfR model were more 
consistent with the ground soil moisture than the pure FY-3C SSM 
product and the SSM estimations from the RR model. These results 
indicate the superiority of the RfR method for accurately monitoring the 
land SSM across the study area. 

Geographical location was the most crucial input feature according 
to the importance values generated by the RfR model, followed by the 
elevation, MODIS NDVI, FY-3C SSM and soil texture. The months from 
January to December were the least important among all the input 
features. The SSM images from January to December 2017 estimated by 
the best ML model showed a gradually decreasing trend from the 
northwestern to the southeastern part of the study area. The results 

Fig. 7. Monthly estimated SSM (cm3/cm3) values obtained using the RfR model from January 2017 to December 2017.  
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matched the spatial and seasonal distribution of the historical monthly 
rainfall in the study area well. Therefore, the comprehensive application 
of data from multiple data sources combined with the appropriate ML 
model is a promising strategy for improving SSM estimation accuracy at 
the national scale. 
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