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Accurate estimation of regional-scale crop yield under drought conditions allows farmers and agricultural
agencies to make well-informed decisions and guide agronomic management. However, few studies have
focused on using the crop model data assimilation (CMDA) method for regional-scale winter wheat yield
estimation under drought stress and partial-irrigation conditions. In this study, we developed a CMDA
framework to integrate remotely sensed water stress factor (MOD16 ET PET�1) with the WOFOST model
using an ensemble Kalman filter (EnKF) for winter wheat yield estimation at the regional scale in the
North China Plain (NCP) during 2008–2018. According to our results, integration of MOD16 ET PET�1 with
the WOFOST model produced more accurate estimates of regional winter wheat yield than open-loop
simulation. The correlation coefficient of simulated yield with statistical yield increased for each year
and error decreased in most years, with r ranging from 0.28 to 0.65 and RMSE ranging from 700.08 to
1966.12 kg ha�1. Yield estimation using the CMDA method was more suitable in drought years
(r = 0.47, RMSE = 919.04 kg ha�1) than in normal years (r = 0.30, RMSE = 1215.51 kg ha�1). Our approach
performed better in yield estimation under drought conditions than the conventional empirical correla-
tion method using vegetation condition index (VCI). This research highlighted the potential of assimilat-
ing remotely sensed water stress factor, which can account for irrigation benefit, into crop model for
improving the accuracy of winter wheat yield estimation at the regional scale especially under drought
conditions, and this approach can be easily adapted to other regions and crops.

� 2022 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Drought is an extreme climate phenomenon that severely
impairs agricultural production [1,2]. The North China Plain
(NCP), which accounts for more than 60% of China’s wheat produc-
tion (https://www.stats.gov.cn/), is usually affected by drought,
and drought intensity, frequency and extent have increased in
recent decades [3,4]. Winter wheat is readily damaged by drought
owing to its poor drought resistance [5], and more than 70% of the
winter wheat area in the NCP is irrigated to ensure stable yield
because only approximately 30% of the annual precipitation in this
area occurs during the winter wheat growing season [6,7]. For
these reasons, accurate estimation of winter wheat yield under
drought stress and partial irrigation conditions at large regional
scale is crucial for optimizing agricultural water management
and ensuring food security [8].

Existing regional-scale crop yield estimation methods (e.g., sta-
tistical method, crop model method, or data assimilation method)
have limitations to some extent. The conventional statistical
method is usually applied by fitting a linear or nonlinear relation-
ship to drought indicators and census yield data, and over 70
drought indices have been developed based on meteorological data
(e.g., rainfall, air temperature, air humidity or solar radiation) or
remote sensing data (e.g., visual light or thermal infrared or micro-
wave radiation) [7,9–12]. However, this approach offers poor uni-
versality for diverse crops and geographical regions, potential
interactions between crop and environment are always over-
looked, and it is hard to extend irrigation information to a large
regional scale [13–17]. Strictly speaking, machine learning (ML)
Co., Ltd.
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Fig. 1. Study area. Green represents the winter wheat region and the blue triangles
represent weather stations.
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and deep learning (DL) are also statistical methods. Recently, they
have provided state-of-the-art results in regional crop yield or agri-
cultural parameter estimation [18–21]. Researchers usually use ML
and DL models for crop yield estimation by integrating multi-
source data including remote sensing data, climate variables, and
soil properties. However, the limited process-based interpretation
of ML and DL models weakens the interpretability and traceability
of crop yields [18].

Crop growth model (CGM) approaches such as WOFOST, DSSAT,
APSIM, STICS, and AquaCrop, are powerful tools for simulating the
soil–plant–atmosphere continuum [1,22–26]. The superiority of
CGM lies in interpreting crop growth mechanistically and charac-
terizing the various crop and soil variables dynamically at the site
scale with a daily time step [27]. However, the accuracy of CGM
depends strongly on local weather, soil, crop, and management
strategies. Owing to the difficulties in regionalization of the model
input parameters, such as crop growth parameters, soil character-
istics, and irrigation information, crop models often use parame-
ters calibrated in a few locations to represent a large spatial
extent. Thus, large errors may be introduced when CGM is applied
over a large area, as cultivars, management practice, and environ-
ments have high spatial heterogeneity [15,28].

The data assimilation method has been gaining increasing
recognition as an effective approach to expanding the site-scale
crop model to the regional scale by integrating remotely sensed
crop or soil features with a crop model [29], permitting more accu-
rate dynamic simulation of crop growth at the regional scale
[15,30–34]. The general workflow of a crop model data assimila-
tion (CMDA) framework can be summarized as follows: remotely
sensed crop parameters are assimilated into the crop growth
model using data assimilation algorithms, and the crop model sim-
ulation accuracy of output variables (such as crop yield, leaf area
index (LAI), and evapotranspiration (ET)) can be improved by opti-
mizing the relevant variables of the crop model. The most com-
monly used assimilation variable of CMDA framework is LAI
[8,14–16], which is an important comprehensive parameter for
crop growth monitoring, and it can reflect the stress and irrigation
information to some extent. However, remotely sensed LAI is usu-
ally retrieved by vegetation index, which shows a time-lagged
response to drought [35,36] and thus may not suitable for crop
yield estimation under drought conditions. Consequently, the vari-
ables that are sensitive to water stress should be considered in the
CMDA scheme for crop yield estimation under drought stress and
partial irrigation conditions.

In recent years, soil water balance-associated variables (such as
soil moisture (SM) and evapotranspiration (ET)) have been assim-
ilated into crop models for crop yield estimation. Hu et al. [26]
assimilated LAI and SM into the Soil Water Atmosphere Plant
(SWAP) model for improving sugarcane growth simulation under
diverse water stress conditions using three data assimilation
approaches at the site scale, and the ensemble Kalman filter (EnKF)
method most accurately estimated SM, LAI development and sug-
arcane yield. Zhuo et al. [33] assimilated remotely sensed soil
moisture time series retrieved from Sentinel-1 and Sentinel-2 into
the WOFOST model for regional-scale winter wheat yield estima-
tion. The WOFOST model simulation process under water-limited
mode was optimized and the accuracy of winter wheat yield esti-
mation was also improved accordingly. Vazifedoust et al. [37]
obtained the significant improvement in accuracy of winter wheat
yield estimation in a small district in Iran by assimilating LAI and
relative ET into the SWAP model using a constant-gain Kalman
filter.

To our knowledge, no studies have used the CMDA method to
assimilate ET-based water stress factor, which can contain crop
irrigation information, into a crop model for crop yield estimation
under drought stress and partial-irrigation conditions. Application
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of the CMDA method for large regional-scale crop yield estimation
under drought conditions is rare, especially in China, although
some encouraging results have been achieved at the site or small
regional scales.

Therefore, the objective of this study was to estimate winter
wheat yield at the regional scale in the NCP, which contains 350
counties, and to improve yield estimation accuracy by integrating
remotely sensed water stress factor with the WOFOST model.
Specifically, we conducted this research through: (a) evaluating
the MOD16 ET PET�1 for water stress diagnose at both site and
regional scales, (b) assimilating remotely sensed water stress fac-
tor (MOD16 ET PET�1) into the WOFOST model for winter wheat
yield estimation at the regional scale in the NCP during 2008–
2018 using the EnKF method, and (c) comparing the yield estima-
tion abilities of the CMDA and an empirical statistical approach
using vegetation condition index (VCI) under drought conditions.
The results are expected to strengthen our understanding for crop
yield estimation under drought stress and partial irrigation condi-
tions in the NCP.
2. Materials and methods

2.1. Study area

The North China Plain is located in northern China with an area
of 4 � 105 km2 (Fig. 1). It covers Beijing, Tianjin, Shandong, and
most areas of Hebei, Henan, Anhui, and Jiangsu provinces. The cli-
mate of the NCP is a typical temperate monsoon climate with a
mean annual precipitation of 472.7–889.2 mm and a mean tem-
perature of 12.8–14.9 �C [27]. The NCP is dominated by a typical
double cropping system of rotational winter wheat and summer
maize cultivation. Winter wheat in this area is usually planted
from late September to early October and harvested in late May
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to June. In this study, we focused on the growing season of winter
wheat from 2008 to 2018. The winter wheat region of the NCP
comes from Huang’s research [15] that the spatial resolution is
30 m, we resampled the pixels to 500 m and selected winter wheat
pixels with 85% purity. Although most winter wheat area on the
NCP is generally irrigated and fertilized, drought still frequently
occurs during the winter wheat growth period and affects wheat
yields.

2.2. Datasets

The Moderate Resolution Imaging Spectroradiometer (MODIS)
8-day ET product (MOD16A2) and 16-day normalized difference
vegetation index (NDVI) product (MOD13A1) (https://ladsweb.mo-
daps.eosdis.nasa.gov/) with 500-m spatial resolution were col-
lected from January to June of 2008 to 2018. The MOD16A2 ET
product was used to generate water stress factor (ET PET�1), and
the MOD13A1 NDVI product was used for Vegetation Condition
Index (VCI) calculation Eq. (1) [38,39],

VCI ¼ NDVIi;j � NDVIi;min

NDVIi;max � NDVIi;min
ð1Þ

where NDVIi;j represents the NDVI value for pixel i at time j and
NDVIi;max and NDVIi;min represent the long time series maximum
and minimum NDVI for pixel i.

The Standardized Precipitation Evapotranspiration Index (SPEI)
(https://spei.csic.es/database.html) was used to perform spatial
comparison with ET PET�1 and VCI. Monthly SPEI-6 data with
0.5� were collected from 2008 to 2018 during the winter wheat
growing season.

Half-hourly eddy covariance data from the flux tower in the
Yucheng station during 2008–2010 were compared with
WOFOST simulated ET and MODIS ET data. Because the observed
data from the flux tower is latent heat flux, the method of
Huang et al. [40] was used to convert half-hourly latent heat flux
to daily ET.

The input data for theWOFOSTmodel includeweather, crop, soil
and management parameters. The WOFOST weather parameters
comprise six elements (irradiation, early morning vapor pressure,
maximum temperature, minimum temperature, wind speed and
precipitation). Daily weather data for 2008–2018 with spatial reso-
lution of 0.1�were obtained from the China Regional Surface Mete-
orological Elements Dataset produced by the National Tibetan
Plateau Data Center (TPDC, https://data.tpdc.ac.cn/zh-hans/data/
8028b944-daaa-4511-8769-965612652c49/?q=) and preprocessed
to the WOFOST weather input format. The Chinese soil database
(https://www.soil.csdb.cn) was used to derive soil moisture con-
tent at the wilting point (SMW), in saturated soil (SM0), and at field
capacity (SMFCF). Some crop parameters, including the day of
emergence (IDEM), the day of flowering, the day of maturity, and
cumulative temperature from emergence to anthesis and from
anthesis to maturity (TSUM1/TSUM2), were collected and calcu-
lated from field measurements and agrometeorological stations.
Other parameters were calibrated using field-measured data from
agrometeorological stations, or set according to previous studies,
or set as default values. Huang et al. [15] provided details of param-
eterization of the WOFOST model for winter wheat.

Official government statistics on winter wheat yields were
obtained at a county level from the 2008–2018 statistical yearbook
of each province in the NCP. Relative error was used to evaluate the
accuracy of winter wheat yield prediction with and without data
assimilation. The relative error was calculated by Eq. (2):

RE ¼ Yieldsim � Yieldsts

Yieldsts
� 100% ð2Þ
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where Yieldsim represents the WOFOST simulated winter
wheat yield and Yieldsts represents official statistical winter wheat
yield.

The 11 years (2008–2018) were divided into two parts: drought
years (2009, 2011 and 2014) and normal years (2008, 2010, 2012–
2013, and 2015–2018), based on the drought-affected areas (statis-
tic from the China National Bureau of Statistics). Winter wheat in
the NCP is irrigated and water stress may not occur frequently,
especially in normal years. However, winter wheat may suffer from
water stress in drought years, which may lead to differences in
crop growth conditions. Therefore, classifying years by drought
was expected to lead to better estimates of the effect of water
stress on crop yield.
2.3. WOFOST model

The WOFOST model was employed as the base model for daily
winterwheat growth simulation in this study [41]. Themodel is dri-
ven by a set of meteorological, crop, soil and management parame-
ters. The major processes are phenological development, CO2

assimilation, transpiration, respiration, partitioning of assimilates
amongvarious organs, anddrymatter formation.A detailed descrip-
tion of the WOFOST model can be found at (https://www.wur.nl/
en/Research-Results/Research-Institutes/Environmental-Research/
Facilities-Tools/Software-models-and-databases/WOFOST.htm).
There are three modes in the WOFOST model: a potential mode, a
water-limited mode, and a nutrient-limited mode. The water-
limited mode was used, and irrigation was added to the model
followingWang [42]. In thewater-limitedmode, water stress factor
(WSF) and actual daily CH2O assimilation rate (GASS) are defined in
Eqs (3) and (4), respectively:

WSF ¼ Ta

Tp
ð3Þ
GASS ¼ PGASS�WSF ð4Þ

where Ta represents actual transpiration, Tp represents potential
transpiration, and PGASS represents potential daily CH2O assimila-
tion rate. However, the MODIS ET product only provides ET and
potential evapotranspiration (PET) data. Because separation of tran-
spiration flux from remotely sensed ET flux is difficult, we followed
Vazifedoust’s strategy [37] of using ET PET�1 as the remotely sensed
WSF.

In this study, we assumed that the dominant winter wheat cul-
tivar was planted in the NCP and that changes in winter wheat cul-
tivar, soil properties, and management during 2008–2012 and
2013–2018 were negligible. Accordingly, the WOFOST model in
2008–2012 and 2013–2018 was calibrated based on the dominant
winter wheat cultivar. The irrigation time in the model was fixed at
April 1 (Day of Year (DOY) 91), May 1 (DOY 121), and May 20 (DOY
140). The irrigation quantity was determined empirically on each
irrigation date. If the soil moisture content was lower than 90%
of the SMFCF, SM was set equal to SMFCF; otherwise, no irrigation
was applied on the date. Besides, three parameters (emergence
date (IDEM), cumulative temperature from emergence to anthesis
(TSUM1), and cumulative temperature from anthesis to maturity
(TSUM2)) were regionalized with a spatial resolution of 500 m.
First, winter wheat emergence date, flowering date, and maturity
date images (Fig. S1A–C) were generated for each year based on
agrometeorological station measurements using Thiessen poly-
gons. Second, regionalized emergence, flowering and maturity date
were used to calculate TSUM1 and TSUM2 (Fig. S1E, F) based on the
daily temperature data.

https://ladsweb.modaps.eosdis.nasa.gov/
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2.4. Data assimilation algorithm

The EnKF method was used to integrate WSF retrieved from
MOD16 with the WOFOST model. The implementation of EnKF
was based on our previous studies [8,33]. The core part of the EnKF
is the calculation of the Kalman gain matrix,

y ¼ Hxt þ e ð5Þ

xt ¼ Axt�1 þ m ð6Þ
where y is the observation vector, e and m are Gaussian random
error vectors with a mean of zero, and H is the observation operator
for y and can be taken as an identity matrix in this study. A repre-
sents a linear state-transition model that links xt and xt-1, and in
the CMDA system it represents the crop model. The forecast of xt
at t = k is Gaussian with mean xft¼k and error covariance Pf

t¼k, calcu-
lated as follows:

xat¼k ¼ xft¼k þ Kðy� Hxft¼kÞ ð7Þ

Pa
t¼k ¼ ð1� KHÞPf

t¼k ð8Þ
where f and a are indices of the prior and posterior estimates,
respectively, I is the identity matrix, and K is the Kalman gain
matrix, defined as

K ¼ Pf
t¼kH

T HPf
t¼kH

T þ Rt¼k

� ��1
ð9Þ

where Rt¼k is the error covariance of the observation ensemble. For
solving the Kalman gain, Houtekamer and Mitchell suggest calculat-

ing Pf
t¼kH

T and HPf
t¼kH

T directly from the ensemble members [43],
rather than calculating each element of Eq. (10):

PfHT ¼ Ne � 1ð Þ�1
XNe

n¼1

xfn � x
�f

� �
Hxfn � Hx

�f
� �T

ð10Þ

HPfHT ¼ Ne � 1ð Þ�1
XNe

n¼1

Hxfn � Hx
�f

� �
Hxfn � Hx

�f
� �T

ð11Þ

where Ne is the number of ensemble members, n is a running index

of ensemble member, and x
�f represents the ensemble mean calcu-

lated as Eq. (12).

x
�f ¼ N�1

e

XNe

n¼1

xfn ð12Þ

H x
�f ¼ N�1

e

XNe

n¼1

Hxfn ð13Þ

We adopted the strategy of Huang et al. [8] incorporating an
inflation factor E to solve the problem of ‘‘filter divergence” and
enlarge K, and E is calculated by Eq. (14):

E ¼ rð k
160

ÞðRk

Pf
k

Þ ð14Þ

where r is a random value between 0 and 1, 160 represents the total
number of days from Jan. 1 to maturity, and k represents the day
number (from 1 to 160).

The ensemble number of the data assimilation scheme was set
as 50, and WOFOST ensembles were generated by perturbing
model input parameters by introducing 10% uncertainty using a
Gaussian distribution based on previous studies [31,33], and the
uncertainty of the MODIS ET product was accordingly set as 10%.
The remotely sensed water stress factor was assimilated into the
WOFOST model at the same time period (from April 1 to June 5)
throughout the study area, because the LAI is generally greater
1473
than 2 m2 m�2 during this period. The data assimilation scheme
was applied only when remotely sensed observations were
available.
3. Results

3.1. Evaluation of ET PET�1 for water stress diagnosis at both regional
and site scale

The spatial distribution of drought indicators during the winter
wheat growing season of 2009, a typical drought year, is shown in
Fig. 2. From the distribution of SPEI we can see that meteorological
drought occurs mainly in spring (from January to April), and that
drought intensity decreased in May and June, which is generally
consistent with the Yearbook of Meteorological Disasters in China.
Compared to the meteorological drought index (SPEI), remotely
sensed drought indicators (VCI and ET PET�1) monitor drought at
a higher temporal and spatial resolution, and only one image per
month was selected for analysis. VCI and ET PET�1 showed similar
drought change trends during the winter wheat growing season,
but their performance differed in some local area. In western Shan-
dong and northern Hebei, no water stress was observed in Febru-
ary and moderate drought in June by ET PET�1, whereas the
opposite was observed with the VCI. Soil moisture at the
weather-station level is also presented as an indicator of drought
conditions. By this indicator, water deficiency occurred mainly in
the western and central regions of the NCP. Overall, the drought
indicators showed generally similar drought change trends and
described drought well aside from local differences.

A comparison of the WOFOST simulated evaporation and tran-
spiration is shown in Fig. 3A. There were large differences between
Ta Tp

�1 and ETa ETp�1 during wintering stage (before March), and
smaller differences after jointing stage (after April). Ta Tp�1 was gen-
erally equal to ETa ETp�1 when winter wheat LAI was greater than
2 m2 m�2. Validation results are shown in Fig. 3B and C: the coef-
ficient of determination (R2) was 0.28 throughout the growing sea-
son (Fig. 3B) and the correlation increased, with R2 equal to 0.81,
when LAI exceeded 2 m2 m�2 (Fig. 3C). This finding confirms the
reliability of using ET PET�1 to characterize water stress in winter
wheat, and the MODIS 16 ET PET�1 data can then be assimilated
into the WOFOST model for winter wheat yield estimation.

As shown in Fig. 4, the WOFOST simulated ET showed close
agreement with flux tower-measured ET, and the 8-day MODIS
ET data generally captured the temporal variation of winter wheat
ET. In general, these three ET data showed a good response to pre-
cipitation and irrigation, such that ET increased sharply when pre-
cipitation and irrigation occurred. Similar results were found in
other years (Figs. S2 and S3).
3.2. Assimilation of MOD16 ET PET�1 into the WOFOST model

We assimilated MOD16 ET PET�1 data into the WOFOST model
using the EnKF algorithm during 2008–2018. Given that official
government statistics of winter wheat yield are compiled at a
county level, we aggregated the WOFOST simulated yield pixels
with or without assimilation into the county scale using the ArcGIS
Zonal Statistics toolbox. Fig. 5 compares the mapped winter wheat
yield simulated by the WOFOST model with and without data
assimilation and official statistics at the county level. Overall, the
WOFOST simulated yield with or without assimilation captured
some of the spatial variation of winter wheat yield, and the simu-
lated yields were generally between 5000 and 7000 kg ha�1,
although inconsistent in some years, especially 2018.

Fig. 6 shows the validation results of the WOFOST simulated
yield without and with EnKF assimilation at the county level using



Fig. 2. Spatial distribution of four drought indicators in the North China Plain during winter wheat growing season in 2009. SPEI, standardized precipitation
evapotranspiration index; VCI, vegetation condition index; ET PET�1, evapotranspiration divided by potential evapotranspiration; SM, soil moisture.
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official statistics for each year. Table 1 shows detailed statistical
validation results. These results indicate that although the
WOFOST simulated yield without assimilation captured some of
the spatial variation of winter wheat yield (Fig. 5), it had a low cor-
relation coefficient and large error with r ranging from 0.14 to 0.39
and RMSE ranging from 827.93 to 1742.87 kg ha�1. Compared with
the WOFOST simulated yield without assimilation, the results with
assimilation improved the accuracy of the winter wheat yield esti-
mation, with the correlation coefficient increasing for each year
and error decreasing in most years with r ranging from 0.28 to
0.65 and RMSE range from 700.08 to 1966.12 kg ha�1. Thus, assim-
ilating MOD16 ET PET�1 data into the WOFOST model reduced the
uncertainty of model simulation and further increased the accu-
racy of yield estimation.

Validation results were generated for three categories: all years,
drought years, and normal years (Fig. 7). Higher r and lower RMSE
were obtained when data assimilation was performed using remo-
tely sensed water stress factor for all three categories. In particular,
the accuracy of winter wheat yield estimates increased more
markedly in drought years than in normal years. Fig. 8 shows the
distribution and relative error of winter wheat yield. Similarly,
the winter wheat yield distribution clearly shows that theWOFOST
simulated yield with assimilation is closer to the statistical results
than that without assimilation in drought years (Fig. 8B). Relative
error (RE), was reduced in most years by integrating remotely
1474
sensed water stress factor with the WOFOST model, and the degree
of reduction of RE was more pronounced in drought years (Fig. 8D).

3.3. Comparison with yield estimation method using remotely sensed
drought index in a typical drought year

Comparison of regional yield estimates using our approach and
the conventional empirical correlation method was performed.
Previous studies [2,44–46] have shown that the jointing, flowering,
and grain-filling stages are highly sensitive to heat and drought
stress. In this study, we chose VCI at DOY 105 and DOY 145, which
correspond generally to the two sensitive growth stages, as the
indicators for constructing the correlation with winter wheat yield.
The statistical correlation model was first trained using field-
measured yield data from agrometeorological stations, and then
the county-scale winter wheat yield was estimated. Fig. 9 presents
the correlations among winter wheat yield estimates at the county
level in 2009, a typical drought year in the NCP. The county-scale
yields include the WOFOST simulated yield without assimilation
(YieldWOF) and with assimilation (YieldEnKF), yield estimation using
vegetation condition index at the jointing-flowering stage
(YieldVCI105) and the grain-filling stage (YieldVCI145), and official sta-
tistical yield (YieldSta). YieldEnKF performed best among these
county-scale yield estimations with a higher correlation coefficient
(r = 0.65) and a lower RMSE (RMSE = 700.08 kg ha�1) in comparison



Fig. 3. Comparison of winter wheat evaporation and transpiration. (A) Comparison of evaporation and transpiration during the winter wheat growing season at the site scale,
and (B) comparison between ETa ETp�1 and Ta Tp

�1 during the full growing season and (C) when LAI > 2 m2 m�2 (a sample assimilation unit in Hebei province). Ta, actual
transpiration; Tp, potential transpiration; Ea, actual evaporation; Ep, potential evaporation; Eta, actual evapotranspiration; ETp, potential evapotranspiration; LAI, leaf area
index.

Fig. 4. Comparison of three evapotranspiration data sets during winter wheat growing season (a sample assimilation unit in Yucheng station). ETTower, eddy flux tower
measured evapotranspiration; ETWOFOST, WOFOST simulated actual evapotranspiration; ETMODIS, MODIS evapotranspiration.
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with YieldSta. This finding further demonstrated that our approach
integrating remotely sensed ET PET�1 with the WOFOST model has
higher potential for winter wheat yield estimation under drought
1475
conditions than the conventional correlation method. Comparison
results for other years are provided in the Supplementary file (Figs.
S4–S13).



Fig. 5. Comparison of the spatial patterns of winter wheat yield simulated by the WOFOST model with and without data assimilation and official statistics. (A) Data from
2008 to 2013. (B) Data from 2014 to 2018.
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4. Discussion

Quantitative evaluation of crop yield under drought stress con-
ditions in the NCP is desirable, given that drought is one of the
major natural hazards in this area [7]. However, previous studies
did not well account for irrigation information when estimating
crop yield at a large regional scale. Taking advantage of remotely
sensed ET data in reflecting irrigation information over a large spa-
tial extent, and the superiority of crop models for describing and
modeling the timing and amount of water stress and crop water
requirement [47], we integrated remotely sensed water stress fac-
tor (MOD16 ET PET�1) and the WOFOST model using an EnKF algo-
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rithm for winter wheat yield estimation at the regional scale in the
NCP during 2008–2018.

In the WOFOST model, winter wheat suffers water stress if root
water uptake cannot meet potential transpiration (Tp), and leaves
begin to close stomata to reduce water loss [48]. Relative transpi-
ration, defined as the ratio of actual and potential transpiration (Ta
Tp
�1), is the indicator of crop water stress in the WOFOST model,

and it is essentially different from ETa ETp�1. In our study, Ta Tp
�1

was generally equal to ETa ETp�1 when LAI exceeded 2 m2 m�2

with R2 and slope equal to 0.81 and 0.75, respectively (Fig. 3C). This
might be because winter wheat transpiration is generally low and
soil evaporation accounts for a large proportion of ET when ground



Fig. 6. Comparison of the WOFOST simulated winter wheat yield without (A) and with (B) assimilation and official statistical yield at the county level during 2008–2018.
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Table 1
Accuracy of simulated yield without and with assimilation at the county level for each year and three kinds of year combinations.

Year Open loop Data assimilation

Mean
(kg ha�1)

Max
(kg ha�1)

Min
(kg ha�1)

Slope r RMSE
(kg ha�1)

Mean
(kg ha�1)

Max
(kg ha�1)

Min
(kg ha�1)

Slope r RMSE
(kg ha�1)

2008 6784 7977 4109 0.08 0.14 1181 6379 7879 4463 0.32 0.45 852
2009 6329 7604 4424 0.26 0.39 827 6061 7186 4184 0.42 0.65 700
2010 6066 7743 4349 0.25 0.35 903 5769 7249 4232 0.31 0.49 930
2011 6982 8103 4272 0.24 0.37 1269 6536 7628 4431 0.36 0.62 893
2012 5498 7381 3778 0.14 0.22 1244 5103 6684 3706 0.18 0.31 1538
2013 5842 7020 4260 0.09 0.17 1176 5502 6933 4025 0.13 0.28 1372
2014 6294 8039 3825 0.18 0.25 1110 5945 7256 3585 0.31 0.49 1112
2015 6000 7873 3964 0.16 0.24 1265 5989 7483 3936 0.23 0.38 1196
2016 5919 7093 3780 0.05 0.14 1173 5768 6975 4409 0.09 0.28 1230
2017 5569 7045 3720 0.21 0.30 1302 5501 6497 3885 0.22 0.41 1311
2018 4683 7082 2146 0.21 0.34 1742 4438 6601 2833 0.30 0.49 1966
All year 5997 8103 2146 0.12 0.19 1211 5728 7879 2833 0.23 0.32 1166
Drought year 6531 8103 3825 0.18 0.28 1089 6177 7628 3585 0.31 0.47 919
Normal year 5796 7977 2146 0.12 0.19 1257 5558 7879 2833 0.21 0.30 1215

Mean, mean value of the simulated yield; Max, maximum value of the simulated yield; Min, minimum value of the simulated yield; Slope, the fitted slope of the regression of
simulated yield on statistical yield; r, correlation coefficient; RMSE, root mean square error.

Fig. 7. Validation of the WOFOST simulated winter wheat yield at the county level without assimilation for three kinds of year combinations: (A) all years, (B) drought years,
and (C) normal years; and with EnKF assimilation for three kinds of year combinations: (D) all years, (E) drought years, and (F) normal years using official statistical yield.
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cover is low (LAI < 2 m2 m�2). Our result is consistent with those of
Feddes et al. [49] and Vazifedoust et al. [37], and confirms the reli-
ability of coupling MOD16 ET product with the WOFOST model
with ETa ETp�1 as the assimilation variable.

Assimilating remotely sensed water stress factor into the
WOFOST model generally produced more accurate winter wheat
yield estimates at the regional scale in each year than open-loop
simulations (Fig. 6B), which is consistent with that of Vazifedoust
et al. [37]. This demonstrated that the WOFOST model could take
advantage of the benefits of the MOD16 ET product, which is a
comprehensive characterization of crop transpiration and soil
evaporation after precipitation, irrigation and fertilization. This
finding means that remotely sensed water stress factor can par-
tially compensate for the deficiency of the WOFOST model in con-
sidering irrigation, especially at the large regional scale. Validation
1478
results for three kinds of year combinations showed that our
approach is more suitable in drought years (with higher r and
lower RMSE) than in normal years (Figs. 7, 8), which has similar
conclusion with Hu et al [26], who obtained better yield estimates
under water-stressed than under well-watered conditions. Overall,
our results indicated that the MOD16 ET product has the potential
for optimizing the water stress information in the WOFOST model
and further improving the accuracy of winter wheat yield
estimation.

Agricultural drought is a complex natural phenomenon that is
related to many factors including weather systems, topographic
conditions, crop types, and soil characteristics [7,46,50]. Many pre-
vious studies [27,38,51,52] have constructed drought indices using
various datasets (such as of meteorological elements, hydrological
variables or spectral characteristics of vegetation) for quantitative



Fig. 8. Winter wheat yield distribution for (A) all years, (B) drought years, and (C) normal years; and (D) relative error of WOFOST simulated yield without and with data
assimilation during 2008–2018 and three kinds of year combinations.
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evaluation of drought. VCI is a widely used remotely sensed
drought index, and many successful results have been achieved
in crop yield estimation using VCI [53–55]. In this study, compar-
ison among county-level yield estimates e.g., YieldWOF, YieldEnKF,
YieldVCI105, YieldVCI145 and YieldSta (Fig. 9) showed that our
approach offers substantial advantages over the conventional cor-
relation method using drought indices. This may benefit from the
advantages of crop model that it is an effective means of daily crop
growth simulation and permit explaining the growth and develop-
ment of crops. For example, when crops suffer from drought, the
crop model will make changes in water balance and vegetation
physiology to respond to water stress in crop growth. However,
remotely sensed drought indices often reflect instantaneous
growth state of crops, and cannot accurately characterize the infor-
mation of vegetation suffering from water stress [46]. Specifically,
NDVI, which was used for calculating VCI in this study, usually
shows a time-lagged response to drought [35,36]. In addition, the
assimilation variable used in this study is generated from ET,
which represents mass and energy exchange between vegetation
and the atmosphere. Previous studies [9,56] indicated that ET
responds faster to water stress (stomatal sensitivity) than do veg-
etation indices.

EnKF has been an effective approach in CMDA framework for
crop yield estimation [8,30,31,33]. However, the EnKF algorithm
has the defect of filter divergence [31,57,58], which usually tends
to reject observations in the late period of crop growth. In the pre-
sent study, an inflation factor was constructed followed the strat-
egy of Huang et al. [8] to enlarge the variance of the forecast
ensemble and further reduce the effect of filter divergence.
Although promising results have been achieved in this study that
winter wheat yield estimation accuracy was essentially improved
by integration of remotely sensed water stress factor with the
WOFOST model using the EnKF algorithm, especially in drought
years (Figs. 6B, 7), EnKF has its own limitation: it assumes that
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both observation and model errors are Gaussian, whereas the
actual situation is much more complex. In future research, the Par-
ticle Filter (PF) algorithm, which assumes non-Gaussian errors,
may be used in place of EnKF in our CMDA scheme for improving
crop yield estimation [59,60].

In the NCP, the high heterogeneity of the winter wheat cultiva-
tion area poses a great challenge for winter wheat yield estimation
by the CMDA method [29]. In this study, we used remotely sensed
ET PET�1 data with 500 m spatial resolution, a size may greater
than those of some fields, although we chose only winter wheat
pixels with purity >85%. Pixels with coarse spatial resolution pixels
contain mixed ground information, which may cause more uncer-
tainty when integrated into the crop model. Meanwhile, remotely
sensed pixels with high heterogeneity may cause greater scale mis-
match between remotely sensed variables and crop model simula-
tions. Therefore, in future studies, remote sensing data with high
spatial resolution should be considered for integration in the
CMDA framework to reduce the scale disparity. As the accessible
of remote sensing data with a finer spatial resolution, promising
results may be achieved by our approach using water stress factor
data with 10–30 m spatial resolution in the NCP even for crop
regions with fragmented fields.

In this study, the WOFOST model was calibrated under the
assumptions that the dominant winter wheat cultivar was planted
in the NCP and that winter wheat characteristics, soil properties,
and management measures did not vary much throughout the
study area. Moreover, only the IDEM, TSUM1, TSUM2, SMW, SM0
and SMFCF of the NCP were regionalized, and remaining parame-
ters were calibrated using the dominant winter wheat cultivar.
However, the choice of cultivar, soil characteristics, and manage-
ment conditions vary within the NCP, possibly leading to large dif-
ferences in crop growth and even yield [8]. In future studies, study-
area partitioning, which accounts for spatial differences in crop
cultivar, soil properties, and management measures by dividing a



Fig. 9. Correlation matrix of winter wheat yield at the county level in 2009 estimated by the WOFOST model without assimilation (YieldWOF), the WOFOST model with
assimilation (YieldEnKF), vegetation condition index at the jointing–flowering stage (YieldVCI105), vegetation condition index at the grain-filling stage (YieldVCI145) and official
statistical yield (YieldSta).
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large area into subregions, should be considered for more accurate
yield estimation [61]. In view of the deficiency of the WOFOST
model in irrigation [30,42], the SWAP model, which is an agrohy-
drological model for water flow, heat and solute transport as well
as crop growth [62], could be incorporated for its superiority in
characterizing water balance. Previous studies [26,37,40] have
focused on assimilating multiple variables into the SWAP model
for crop yield estimation and successful results have been
achieved.
5. Conclusions

We assimilated remotely sensed water stress factor (ET PET�1)
into the WOFOST model using the EnKF method for winter wheat
yield estimation in the NCP during 2008–2018. The results illus-
trated that MOD16 ET PET�1 product could characterize water
stress at regional and site scales and could be further used to opti-
mize the WOFOST model for winter wheat yield estimation. Yield
1480
estimation results showed that our approach improved winter
wheat yield estimates and their spatial patterns at the regional
scale over a relatively long term. In particular, assimilating ET
PET�1 into the WOFOST model led to higher accuracy (higher r
and lower RMSE) of yield estimation in drought years than in nor-
mal years. The results also confirmed that our approach is superior
to the conventional empirical correlation method using remotely
sensed drought indices. Our study demonstrated the superiority
of integrating remotely sensed water stress factor with a crop
model for winter wheat yield estimation at the regional scale
under drought-stress conditions and has great potential for appli-
cation to other crops and regions.
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