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Abstract 
Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary 
for ecological modeling and precision agricultural activities.  In this paper, using time series of soil temperature (ST) measured 
at different depths (0, 5, 10, 20, and 40 cm) at agro-meteorological stations in northern China as reference data, ST was 
estimated from land surface temperature (LST) and normalized difference vegetation index (NDVI) derived from AQUA/
TERRA MODIS data, and solar declination (Ds) in univariate and multivariate linear regression models.  Results showed 
that when daytime LST is used as predictor, the coefficient of determination (R2) values decrease from the 0 cm layer to 
the 40 cm layer.  Additionally, with the use of nighttime LST as predictor, the R2 values were relatively higher at 5, 10 and 
15 cm depths than those at 0, 20 and 40 cm depths.  It is further observed that the multiple linear regression models for 
soil temperature estimation outperform the univariate linear regression models based on the root mean squared errors 
(RMSEs) and R2.  These results have demonstrated the potential of MODIS data in tandem with the Ds parameter for soil 
temperature estimation at the upper layers of the soil profile where plant roots grow in.  To the best of our knowledge, this is 
the first attempt at the synergistic use of LST, NDVI and Ds for soil temperature estimation at different depths of the upper 
layers of the soil profile, representing a significant contribution to soil remote sensing.
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1. Introduction 

Soil is an essential resource for material circulation 
and energy exchange between living things and the 
environment, and is vital in the regulation of ecosystem 
services (Fangueiro et al. 2018).  Soil temperature is one 
of the most important components of the Earth’s surface 
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energy budget and plays an important role in climatology, 
agriculture, ecosystems, hydrology, and the environment.

Estimating soil temperature is useful for understanding 
the energy exchange between atmosphere and land 
(Hillel et al. 1998; Hu and Feng 2003; Gao et al. 2011) 
and providing valuable information on the biophysical and 
biochemical processes in soils.  Temperature strongly 
influences the soil freeze and thaw states (Shati et al. 2018), 
seed sowing dates (Araghiet al. 2017), crop growth (Beck 
et al. 2010; Huang et al. 2019a) and development (Huang 
et al. 2012, 2016, 2018, 2019b; Huang R et al. 2015), 
yield (Hillel et al. 1998), and the rate of plant diseases 
and insect pests.  In addition, it also influences infiltration 
(Jebamalaret al. 2012), evapotranspiration (Moran et al. 
2009) and hence, soil water content (Tabbaghet al. 2016).  
Moreover, the crop root systems are strongly influenced by 
soil temperature.  Generally speaking, soil temperature has 
greater effects on crop growth and yield than ambient air 
temperature in many cases (Hillel et al. 1998).  Therefore, it 
is necessary to develop robust models that would estimate 
daily soil temperature seamlessly down the soil profile.

Most soil temperature observations across the globe 
are still based on in-situ measurements obtained at 
meteorological stations.  Though these platforms can 
provide a long time series of accurate soil temperature 
readings at predetermined depths down the soil profile, 
being point-based and sparsely located across landscapes, 
limit their ability to truly represent the spatial dynamics of 
soil temperature.  In this regard, several methodologies 
involving statistical models, interpolation techniques and 
remote sensing have been developed and implemented 
for spatio-temporal soil temperature estimation in support 
of ecological modeling and agronomic activities.

Univariate and multiple regression-based models have 
been developed to estimate soil temperature by considering 
various atmospheric variables, soil formation factors, terrain 
attributes, and location (Yang et al. 1989; Zhang et al. 1993; 
Barringer et al. 1997; Feng and Dai 2004; Mackiewicz et al. 
2012).  Yang (1989) estimated soil temperature at 50 cm 
depth using soil temperatures at 40 and 80 cm depths, 
air temperature, precipitation, and wind speed measured 
at eight meteorological stations from 1950 to 1980 (Yang 
et al. 1989).  Barringer (1997) found a strikingly stable 
relationship between temperature and altitude in South 
Island High Country of New Zealand by multiple linear 
regressions between site attribute data and soil temperature 
data (Barringer et al. 1997).  Mackiewicz et al. (2012) 
employed dummy predictor variables in a multiple linear 
regression to quantify soil temperature responses to air 
temperature and snow cover.  Nevertheless, the spatial 
variability of soil temperature is modified by terrain attributes 
especially in heterogeneous terrain and land cover (Kang 

et al. 2000; Daly et al. 2006; Mackiewicz 2012; Lehnert 
et al. 2013).  Lehnert et al. (2013) identified the geo-factors 
influencing soil temperature regime in Olomouc, eastern 
Czech Republic, and concluded that variability of the soil 
temperature regime was due to the physical and chemical 
properties of soils, topography, and atmospheric inversions.

Geo-statistics, such as kriging, inverse distance 
weighting, triangular irregular network, trend surface 
analysis, smoothing splines, and neighborhood-based 
functions, have been used for spatial interpolation of soil 
temperature on the basis of measured data (Burrough 
et al. 1986; Webster and Oliver 1992; Mitasova and 
Mitas 2001; Jin and Mullens 2014).  And for the complex 
topographical region or for the purpose of modeling dynamic 
soil properties especially over complex topographies, more 
advanced interpolation algorithms were introduced using 
a large number of variables, including terrain attributes, 
spatial coordinates, and expert knowledge (Burrough 
1986; Agnew and Palutikof 2000; Gasch et al. 2015).  By 
comparing different mathematical interpolation methods, 
Wu et al. (2016) concluded that the interpolation method 
considering the effects of elevation is more accurate than 
others, and that the thin plate spline with latitude, longitude, 
and elevation, recorded the best performance in a complex 
topographical region.  However, studies have shown that 
the performance of interpolation methods depends on the 
available independent and auxiliary datasets as well as the 
characteristics of the areas under study (Vicente-Serrano 
et al. 2003; Wu et al. 2013, 2016).

Land surface temperature  (LST) retrieved from satellite 
images has already been used in the estimation of daily 
maximum air temperature (Lin et al. 2012; Cai et al. 2017; 
Yoo and Im 2017), minimum air temperature (Peon et al. 
2014; Bustos and Meza 2015; Didari et al. 2017) and 
mean air temperature (Huang J X et al. 2015; Zhang et al. 
2016; Wang et al. 2017).  It has also been used to model 
the surface urban heat island (SUHI) effect in urbanized 
regions (Huang et al. 2017; Gaur et al. 2018; Meng et al. 
2018).  Besides, LST can affect soil moisture (SM), and 
there are several approaches that use LST to estimate 
SM (Song et al. 2014; Colliander et al. 2017) or monitor 
drought based on the temperature vegetation dryness 
index (TVDI) (Gao et al. 2011; Du et al. 2017; Zhang et al. 
2017).  Moreover, satellite-derived normalized difference 
vegetation index (NDVI) is a crucial source of information 
and one of the most frequently adopted vegetation indices 
for a variety of land applications.  For example, NDVI data 
have been used for large-area crop mapping (Peng et al. 
2011; Skakun et al. 2017), classification (Zhang et al. 2017), 
and change detection (Tong et al. 2017).  Time series of 
NDVI are generally used for the assessment and monitoring 
of crops, forests, and grasslands (Liao et al. 2017), and to 
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estimate gross primary productivity and crop yield (Huang 
et al. 2014).  

Although LST and NDVI data have been widely used in 
air temperature estimation, little attention has been paid to 
soil temperature estimation with LST data, and it has been 
suggested that temperatures at the upper layers of the soil 
profile may be a better surrogate than the near-surface air 
temperature for crop growth modelling and yield estimation 
(Shati et al. 2018).  

Kang et al. (2000) reported that soil temperature is 
sensitive to leaf area index (LAI) in forested areas and 
Huang et al. (2008) assimilated LST and LAI into the 
Common Land Model (CLM) to improve the estimation 
of soil temperature.  Soil temperature is not only related 
to the air temperature but also is influenced by deep soil 
thermal conditions.  With remote sensing data, models 
can be applied to describe the spatial heterogeneity of 
soil temperature within heterogeneous topography and 
vegetation.

As ground-based soil temperature observations are 
unevenly distributed and relatively sparse in spatial terms, it 
is imperative to develop methods that would provide spatially 
seamless estimates of daily soil temperature at different 
depths, and this can be achieved using data acquired from 
Earth-observation satellites.  However, the estimation of 
soil temperatures using satellite data is challenging and 
no satellite-derived soil temperature data are currently 
available (Shati et al. 2018).  The relationships among 
soil temperature, LST and vegetation indices derived from 
satellite data are still not adequately explored.  Therefore, 
the current study aims at proposing a simple but accurate 
approach to providing spatially continuous estimation of the 
daily spatial dynamics of soil temperature using moderate 
resolution imaging spectroradiometer (MODIS), taking 
northern China as case study.  To this end, the univariate 
linear regression models were developed at depths of 0, 5, 
10, 20, and 40 cm using LST, NDVI, and solar declination 
(Ds) as predictors, respectively.  Then multivariate linear 
regression models were developed to estimate soil 
temperature at the aforementioned depths using LST, NDVI, 
and Ds as predictor variables.  At last, the performances of 
the soil temperature estimation models were evaluated using 
the coefficient of determination (R2) and root mean square 
error (RMSE), based on an independent validation dataset.  

2. Data and methods

2.1. Study area

This study was conducted in an agricultural region located 
in northern China, including Jilin Province, Liaoning 

Province, Heilongjiang Province and four prefecture-level 
administrative divisions in eastern part of Inner Mongolia 
(Hulunbuir, Hinggan League, Tongliao and Chifeng).  The 
study area lies between latitude 38°N and 54°N, and 
longitude 115°E and 135°E and the whole area is 1.24×106 
km2 in size.  This area is characterized by extensive plains 
including the Songnen Plain, Sanjiang Plain and the Liaohe 
River Plain.  Being surrounded by the Khingan Mountains 
and Changbai Mountains, the elevation of this area ranges 
from 0 to 2 500 m.  

The study area has a temperate continental climate with 
an average annual temperature of –2.2 to 10°C, and the 
minimum and maximum air temperatures are –56.3 and 
55.1°C, respectively from 2003 to 2015.  In general, the air 
temperature decreases significantly with increasing latitude.  
The distribution of precipitation in this area is both spatially 
and temporally uneven, with an annual total ranging between 
171.4 and 1 611.15 mm.  The western part of the study area 
receives much less precipitation than the eastern part, with 
rainfall mainly occurring from May to September in the 
eastern part, whereas in the western part, rainfall mainly 
occurs from June to August, 60% of which is recorded in 
July and August.

The area under study is renowned for grain crop 
cultivation in China.  A single-season crop cultivation system 
is practiced in this area with the main crops being rice, 
maize, and soybean.  The soils are mostly dark-colored, 
suggesting the high amount of organic matter or humus and 
soil fertility in this area.

2.2. Remote sensing data

The remote sensing data used in this study are LST and 
NDVI.  LST and NDVI were retrieved from images of MODIS 
satellite sensor onboard National Aeronautics and Space 
Administration (NASA)’s AQUA and TERRA Spacecrafts.  
TERRA and AQUA were launched on 12 Dec. 1999 and 4 
May 2002, respectively.  Each satellite observes the entire 
Earth’s surface every one to two days, and retrieves data 
at 36 spectral bands.  The data products derived from 
MODIS observations are crucial for studying the change of 
the atmosphere (He et al. 2017), land (Friedl et al. 2002), 
cryosphere (Casey et al. 2017), and ocean (Petrou and Tian 
2017).  MODIS LST and NDVI products use a sinusoidal grid 
tiling system.  Each tile covers 10 degrees by 10 degrees at 
the equator.  Tiles used in this study are h25v03, h25v04, 
h26v03, h26v04, h27v04 and h27v05.

The MODIS LST products can be obtained using a 
generalized Split-Window algorithm (Wan et al. 1996) with 
a pair of MODIS daytime and nighttime in seven TIR bands, 
atmospheric temperature and water vapor.  With the different 
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atmospheric absorptions of MODIS radiance data in bands 
31 and 32, linearizing or nonlinearizing the radiative transfer 
equation can retrieve surface emissivity and temperature.  
The coefficients of this split-window algorithm were 
determined based on viewing angle, total column water 
and surface air temperature (Wan et al. 1996).  The LSTs 
used in this study is the daily MODIS LST products，at 
1-km spatial resolution.  MOD11A1 is the TERRA MODIS 
LST product which can provide daytime and nighttime LST 
at 10:30 a.m. (LSTTD) and 10:30 p.m. (LSTTN) along with 
quality assessment.  MYD11A1 is the AQUA MODIS LST 
product which can provide daytime and nighttime LST at 
1:30 p.m. (LSTAD) and 1:30 a.m. (LSTAN) along with quality 
assessment. 

NDVI data were derived from the 16-day TERRA 
MODIS vegetation index product at 1-km spatial resolution 
(MOD13A2).  We collected the MOD11A1, MYD11A1 
and MOD13A2 products acquired from 2003 to 2013 via 
the Land Processes Distributed Active Archive Center  
(LP DAAC).  Vegetation indices (VIs) are different 
combinations of two or more spectral bands which can 
provide more information than a single spectral band.  A 
lot of VIs, such as NDVI, ratio vegetation index (RVI), soil 
adjusted vegetation index (SAVI), atmospherically resistant 
vegetation index (ARVI), ratio analysis of reflectance 
spectra (RARS), modified soil adjusted vegetation index 
(MSAVI), optimized soil adjusted vegetation index (OSAVI), 
photochemical reflectance index (PRI), pigment specific 
simple ratio & pigment specific normalized difference 
(PSSR & PSND), aerosol free vegetation index (AFVI), and 
the enhanced vegetation index (EVI), have been developed 
for the study of vegetation.  Most VIs use red, and the near 
infrared (NIR) spectral bands.  These VIs have been proven 
to be good indicators of vegetation state and dynamics.  
The NDVI, which is one of the most widely used vegetation 
index, can be calculated as follows:

NDVI=
ρNIR–ρRed

ρNIR+ρRed �
(1)

The vegetation absorbs most of the red radiation due to 
the pigments and reflects most of the NIR radiation due to 
the leaf cellular structure.  In order to get daily NDVI data, 
the 16-day MODIS NDVI was reconstructed based on the 
Savitzky-Golay (S-G) filter.

2.3. In-situ soil temperature measurements

Soil temperature (ST) data were acquired from 2003 to 
2015 at 53 meteorological stations in the study area.  Soil 
temperatures were observed at depths of 0, 5, 10, 20, and 
40 cm.  Among these 53 stations, there are 15 in Liaoning 
Province, 13 in Jilin Province, 13 in Heilongjiang Province 

and 12 in the eastern part of Inner Mongolia.  The 53 
stations were chosen such that they cover a wide range 
of climatic, topographic, soil, and land cover features.  
We sorted these 53 stations by altitude, and selected a 
validation station for every three stations.  The 53 stations 
were thus divided into two categories; calibration and 
validation datasets.  The calibration dataset included soil 
temperature measurements acquired from 2003 to 2013 
at 35 stations, which are Aihui, Sunwu, Bei’an, Kunshan, 
Hailun, Fujin, Anda, Yilan, Harbin, Boli, Haoertu, Balinzuoqi, 
Shebotu, Fuyu, Nong’an, Shuangliao, Shuangyang, Yongji, 
Jiaohe, Gangzi, Aohanqi, Zhangwu, Fuxin, Xifeng, Panshi, 
Helong, Yanji, Ningchengxian, Chaoyang, Shenyang, 
Liaoyang, Xinbin, Jianchang, Xingcheng and Dawa.  
Whereas the validation dataset comprises soil temperature 
measurements of the remaining 18 stations from 2003 
to 2013, which are Jiagedaqi, Xiaoergou, Fuyu, Huerle, 
Bayan, Qianguo, Zhalute, Changling, Alukeerqinqi, Kailu, 
Wangqing, Baoguotu, Changtu, Kaiyuan, Yixian, Heishan, 
Linjiang and Haicheng, and data acquired from all 53 
stations from 2014 to 2015.

2.4. Data processing and estimation models 

The MODIS Reprojection Tool (MRT) was used to 
preprocess the MODIS data used in this study.  We first 
converted the original Sinusolidal projection of daily MODIS 
LST products (MOD11A1 and MYD11A1) and 16-day 
VI products (MOD13A2) into Standard Albert projection.  
Then, we extracted the corresponding datasets, including 
LST_Day_1km, QC_Day, LST_Night_1km, and QC_Night 
datasets from both MYD11A1 LST products and MOD11A1 
LST products, and NDVI and NDVI quality from the 
MOD13A2 VI product.  Finally, mosaicked tiles of each 
dataset were produced.

Variations of NDVI can reflect the gradual process of 
vegetation growth.  The curves of NDVI time-series are 
continuous and smooth as the NDVI data reflect the state 
and dynamics of vegetation (Chen et al. 2004).  MODIS 
NDVI data in this study have a fixed and uniform interval 
of 16 days.  They were prepared by noise reduction and 
smoothened to a continuous daily time-series.  The method 
used in this study is based on the Savitzky-Golay (S-G) filter.  
The S-G filter is a simplified least-squares-fit convolution for 
smoothing consecutive data (Savitzky and Golay 1964).  The 
general equation of the simplified least-squares convolution 
for NDVI time-series smoothening is given as follows:

NDVIS_G, j=
∑K

i=–KCiNDVIo, j+i

L �
(2)

where NDVIo, j+i is the original NDVI value, NDVIS_G, j is the 
calculated NDVI value, K is the half-width of the smoothing 



281HUANG Ran et al.  Journal of Integrative Agriculture  2020, 19(1): 277–290

window, and L=2K+1.  The coefficients of an S-G filter (Ci) 
can be given as a polynomial of certain degree.  The degree 
of the polynomial is usually set in the range from 2 to 4.  In 
this study, we used the second degree polynomial (K=2).  
A lower degree of the polynomial produces a smoother 
result but may introduce bias, and a higher degree of the 
polynomial may “over fit” the data.  The S-G filter replaces 
the noise values of NDVI and preserves the upper NDVI 
envelope.

Solar declination (Ds), expressed in degrees is a 
function of the day of the year and influences the spatial 
distribution of solar radiation.  The change in Ds throughout 
the year ranges from –23.442° at winter solstice to 23.442° 
at summer solstice, and it equals zero at the equinoxes 
(Bourges et al. 1985).  It can be calculated using the eq. (3):

Ds=23.45sin(360°× )284+t
365

�
(3)

where t is the day of year, beginning from the 1st January.
The estimation models of soil temperature at different 

depths in northern China were developed by multiple linear 
regressions that describe how the target variable of interest 
(soil temperature) at different depths is related to LST, 
NDVI and Ds.  The linear regression model used for soil 
temperature estimation is given in eq. (4):

STd=aLST+bNDVI+cDs+ε� (4)
where  STd is the soil temperature at depth d, d=0, 5, 10, 15, 
20 and 40 cm, respectively.  LST represents LSTTD, LSTTN, 
LSTAD, and LSTAN, respectively, a, b and c are regression 
coefficients, and ε is the random error.  The R2 and RMSE 
were used to evaluate the soil temperature estimation 
accuracy of the linear regressions used in this study.  

3. Results 

3.1. Soil temperature estimation with univariate linear 
regression models

A series of univariate linear regression models were built 
with different depths of ST as dependent variables, and with 

LSTAD, LSTAN, LSTTD, LSTTN, NDVI or Ds as independent 
variables, respectively, using calibration data from 2003 to 
2013.  The calibration areas were selected based on the 
availability of satellite-derived LSTs (LSTAD, LSTAN, LSTTD 

and LSTTN).  The R2 and RMSEs values of these models are 
given in Table 1.  The results show that the univariate linear 
regression models are significant at the 0.001 confidence 
level.  The R2 values range from 0.13 to 0.90 and RMSE 
from 2.37 to 7.15.  At the same soil layer, the univariate 
linear regression models for soil temperature estimation 
using TERRA nighttime LST as estimator produced the 
most accurate estimates by virtue of recording the highest 
R2 values and the lowest RMSE.  For instance, at the 0 
cm layer, using TERRA nighttime LST data as predictor of 
soil temperature, an R2 of 0.83 and an RMSE of 3.79 were 
recorded.  For Ds, the R2 decrease from 0.77 at 0 cm to 
0.52 at 40 cm with corresponding RMSE values ranging 
from 6.54 to 7.15.  On the other hand, the R2 between soil 
temperatures and NDVI increase from 0.47 at the 0 cm layer 
to 0.72 at the 40 cm layer.  This means that the estimator 
of LSTs or Ds and NDVI are complementary.

Using LSTs as estimator, all R2 values are significant 
at the 0.01 confidence level.  The R2 values between soil 
temperature and nighttime LST are higher than daytime 
LST for both TERRA and AQUA satellite data, and RMSEs 
are also smaller for models based on nighttime LSTs.  For 
example, the R2 values between soil surface temperature 
(0 cm) and daytime LST are 0.67 and 0.69, with RMSEs 
of 4.72 and 4.64 for AQUA and TERRA, respectively.  The 
univariate estimation model of soil temperature at the 0 cm 
layer using nighttime LST as predictor recorded R2 values 
of 0.79 and 0.83, with RMSEs of 3.89 and 3.79 for AQUA 
and TERRA, respectively.  At 40 cm, the R2 values between 
ST and daytime LST are only 0.13 and 0.14, with RMSEs 
of 5.5 and 5.58, but their R2 values with nighttime LST are 
0.66 and 0.72, with RMSEs of 4.05 and 3.72 for AQUA 
and TERRA, respectively.  At daytime, the R2 between 
soil temperature and LST decrease with soil depth rapidly 
with a corresponding increase in RMSE.  At nighttime, the 

Table 1  R2 and RMSE for the univariate estimation models of soil temperature using land surface temperature (LST), normalized 
difference vegetation index (NDVI) and solar declination (Ds)1)

Depth (cm)
LSTAD LSTAN LSTTD LSTTN NDVI Ds

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
0 0.67 4.72 0.79 3.89 0.69 4.64 0.83 3.79 0.47 6.16 0.77 7.15
5 0.52 4.8 0.83 3.02 0.55 4.75 0.9 2.55 0.47 5.17 0.74 6.54
10 0.45 4.89 0.83 2.96 0.46 4.87 0.9 2.37 0.62 4.82 0.71 6.58
15 0.37 5.01 0.81 3.04 0.38 5.01 0.9 2.45 0.64 4.67 0.68 6.69
20 0.29 5.14 0.77 3.26 0.31 5.16 0.86 2.7 0.66 4.54 0.64 6.76
40 0.13 5.5 0.66 4.05 0.14 5.58 0.72 3.72 0.72 4.35 0.52 6.76
1) AD, AN, TD and TN refer to AQUA daytime, AQUA nighttime, TERRA daytime, and TERRA nighttime, respectively; RMSE, root mean 

squared error. 
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R2 between soil temperatures and LST increases first and 
reaches the maximum at 10 cm where the minimum RMSE 
is recorded.  Below 10 cm depth, R2 decreases with a 
corresponding increase in RMSE, indicating a progressive 
decline in accuracy.  

3.2. Soil temperature estimation with multivariate 
linear regression models

Table 2 presents the multivariate linear regression models 
for soil temperature estimation at different depths using 
AQUA/TERRA daytime and nighttime LST, NDVI and Ds 
as predictors based on in-situ calibration using training 
stations’ data from 2003 to 2013.  The results show that all 
estimation models are significant at the 0.001 confidence 
level.  The R2 ranges from 0.71 to 0.92 and RMSE from 
2.16 to 3.34.  Compared with the results in Table 1, it can be 
seen that the multivariate linear regression models for the 
estimation of soil temperature have lower RMSEs and higher 
R2 than those of the univariate linear regression models 
at the same soil layer.  This means that the multiple linear 
regression models for the estimation of soil temperature 
outperformed the univariate linear regression models.  The 
R2 values decrease from the 0 cm to the 40 cm soil layers.  
With nighttime LSTs as predictor variables, the R2 values 

are higher at the 5, 10 and 15 cm layers than those at 0, 20 
and 40 cm, and soil temperature estimates with nighttime 
LST generally recorded higher R2 values than corresponding 
estimates obtained from daytime LST.  

Among the six soil depths investigated, the multivariate 
linear regression models constructed at the 5 cm depth 
produced the highest R2.  The R2 of soil temperature 
estimation models decrease progressively from the 5 cm 
to the 40 cm layers, with estimates based on TERRA LST 
recording higher R2 values at both day and night time 
estimation scenarios.

3.3. Validation of soil temperature estimation models

Two validations were implemented in this study: spatial 
and temporal.  Fig. 1 presents the scatterplots of measured 
and estimated soil temperatures at 0, 5, 10, 20, and 40 cm 
based on validation data from 2003 to 2013 that correspond 
to AQUA and TERRA satellite overpasses (day and night), 
respectively.  All figures show the points to be distributed 
along the 1:1 line, suggesting a robust estimation of soil 
temperatures.  Table 3 shows the validation of measured 
and estimated soil temperatures at 0, 5, 10, 20, and 40 cm 
based on all in-situ measurements and corresponding day 
and night satellite (MODIS AQUA and TERRA) signals from 

Table 2  Estimation models of soil temperature at different depths using land surface temperature (LST), normalized difference 
vegetation index (NDVI) and solar declination (Ds) as predictors using the training stations’ data from 2003 to 20131)

Depth (cm) Model R2 RMSE P-value MAE n
0 ST0=0.624LSTAD+19.241NDVI+0.136Ds–7.453 0.89 2.70 0.000 2.13 14 288

ST0=0.744LSTAN+4.899NDVI+0.206Ds+9.324 0.85 3.34 0.000 2.70 17 652
ST0=0.673 LSTTD+19.539NDVI+0.111Ds–7.69 0.90 2.67 0.000 2.10 16 150
ST0=0.771 LSTTN+3.407NDVI+0.209Ds+8.704 0.86 3.24 0.000 2.60 22 679

5 ST5=0.49LSTAD+21.197NDVI+0.086Ds–6.681 0.86 2.57 0.000 2.01 13 796
ST5=0.652LSTAN+8.802NDVI+0.135Ds+6.854 0.88 2.63 0.000 2.12 16 609
ST5=0.523LSTTD+21.475NDVI+0.069Ds–6.773 0.88 2.49 0.000 1.96 15 540
ST5=0.741LSTTN+5.862NDVI+0.112Ds+6.426 0.92 2.27 0.000 1.81 21 490

10 ST10=0.458LSTAD+22.3NDVI+0.032Ds–6.53 0.85 2.63 0.000 2.06 13 799
ST10=0.626LSTAN+10.641NDVI+0.083Ds+6.159 0.86 2.63 0.000 2.11 16 614
ST10=0.489LSTTD+22.605NDVI+0.016Ds–6.621 0.86 2.54 0.000 1.99 15 544
ST10=0.729LSTTN+7.335NDVI+0.054Ds+5.799 0.92 2.16 0.000 1.73 21 499

15 ST15=0.434LSTAD+23.313NDVI - 0.012Ds–6.364 0.81 2.70 0.000 2.09 13 799
ST15=0.609LSTAN+12.230NDVI+0.038Ds+5.619 0.86 2.67 0.000 2.13 16 613
ST15=0.464LSTTD+23.592NDVI - 0.027Ds–6.457 0.83 2.61 0.000 2.00 15 545
ST15=0.715LSTTN+8.694NDVI+0.006Ds+5.362 0.92 2.18 0.000 1.73 21 502

20 ST20=0.411LSTAD+24.1NDVI–0.049Ds–6.242 0.79 2.81 0.000 2.16 13 791
ST20=0.5585LSTAN+13.746NDVI–0.001Ds+5.011 0.85 2.77 0.000 2.21 16 602
ST20=0.484LSTTD+24.409NDVI - 0.064Ds–6.327 0.81 2.71 0.000 2.11 15 534
ST20=0.694 LSTTN+10.01NDVI–0.034Ds+4.858 0.90 2.31 0.000 1.83 21 489

40 ST40=0.337LSTAD+25.541NDVI–0.163Ds–5.679 0.71 3.17 0.000 2.41 12 766
ST40=0.529LSTAN+16.723NDVI–0.132Ds+3.405 0.81 3.01 0.000 2.41 15 922
ST40=0.347LSTTD+25.837NDVI–0.172Ds–5.535 0.74 3.12 0.000 2.39 14 517
ST40=0.608LSTTN+13.422NDVI–0.157Ds+3.327 0.85 2.74 0.000 2.17 20 480

1) AD, AN, TD and TN refer to AQUA daytime, AQUA nighttime, TERRA daytime, and TERRA nighttime, respectively; RMSE, root mean 
squared error; MAE, mean absolute error. 
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Fig. 1  Scatterplots of measured soil temperature (ST) from 18 validation stations and estimated soil temperature at the 0, 5, 10, 
15, 20 and 40 cm layer from 2003 to 2013 based on remotely-sensed data.  AD, AN, TD and TN refer to AQUA daytime, AQUA 
nighttime, TERRA daytime, and TERRA nighttime, respectively; RMSE, root mean squared error.
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2014 to 2015.  The resultant R2 values of two validations 
range from 0.67 to 0.93 and RMSEs from 2.22 to 3.69.  
Similar to the results of models involving training data, R2 
values decrease from the 0 cm layer to the 40 cm layer 
when the AQUA/TERRA daytime satellite data were used as 
estimators.  But R2 values attain their maximum at 5 or 10 cm 
when nighttime satellite data were employed as estimators 
of soil temperature.  On the other hand, the RMSEs at 5 cm 
are the lowest among the different depths (0, 5, 10, 20, and 
40 cm) when daytime or nighttime LSTs derived from AQUA/
TERRA MODIS data are used as estimators.

4. Discussion

4.1. Mechanisms of soil temperature with remotely- 
sensed data

It is observed based on results obtained in this study that 
the differences in correlation coefficients are associated 
with the diurnal and seasonal variations of solar radiation.  
Generally, during daytime the soil surface absorbs incoming 
(shortwave) solar radiation which exceeds the emitted 

longwave (terrestrial) radiation.  With the absence of 
insolation at night, the soil surface emits terrestrial radiation.  
It is observed that LST exhibits larger magnitudes when 
compared to soil temperature at different depths during 
daytime (Fig. 2).  Additionally, the seasonal variation of soil 
temperature is a function of incident solar radiation, which 
dictates the LST dynamics.  It is therefore apparent that the 
seasonal variations in deep soil temperature are much less, 
and lag significantly behind seasonal changes in LST.  The 
deep soil temperatures increase more slowly with lesser 
fluctuations than LST in spring.  In contrast, the deep soil 
cools more slowly than the land surface in autumn.  This 
makes the deep soil cooler than the land (soil) surface in 
summer (making it a heat sink), but warmer than the land 
(soil) surface in winter (making it a heat source).  

Based on the above account, LST, NDVI, and Ds are 
excellent predictors of soil temperature at different depths.  
The multiple linear regression models used in the current 
study have provided a simple but practical solution to 
problems encountered in the estimation of soil temperature 
by integrating LST and NDVI with auxiliary solar declination 
data.  The current study revealed the potential of utilizing 
LST and NDVI obtained from MODIS, as well as Ds, to 
estimate soil temperature.  Further studies are needed to 
validate our proposed models with related remotely-sensed 
data such as the Visible Infrared Imaging Radiometer 
Suite (VIIRS) onboard the Suomi National Polar-Orbiting 
Partnership (S-NPP) (Yu et al. 2005; Guillevic et al. 2012, 
2014; Li et al. 2014; Liu et al. 2015; Islam et al. 2017; Niclòs 
et al. 2018) and Fengyun polar-orbit satellite series (Jiang 
et al. 2015; Tang et al. 2015; Song et al. 2017).

Table 3  Validation of measured soil temperature from 53 
validation stations and estimated soil temperature from 2014 
to 2015 based on remotely-sensed data1)

Depth (cm) Variables R2 RMSE n
0 LSTTN, NDVI, Ds 0.8516 3.40 3 299
0 LSTAN, NDVI, Ds 0.8449 3.30 4 577
0 LSTTD, NDVI, Ds 0.8717 3.17 2 560
0 LSTAD, NDVI, Ds 0.8765 3.10 3 887
5 LSTTN, NDVI, Ds 0.9136 2.37 3 298
5 LSTAN, NDVI, Ds 0.867 2.75 4 580
5 LSTTD, NDVI, Ds 0.854 3.06 2 559
5 LSTAD, NDVI, Ds 0.854 2.97 3 887
10 LSTTN, NDVI, Ds 0.9145 2.29 3 294
10 LSTAN, NDVI, Ds 0.8504 2.83 4 580
10 LSTTD, NDVI, Ds 0.8291 3.18 2 557
10 LSTAD, NDVI, Ds 0.825 3.11 3 884
15 LSTTN, NDVI, Ds 0.9077 2.36 3 294
15 LSTAN, NDVI, Ds 0.8338 2.94 4 580
15 LSTTD, NDVI, Ds 0.8081 3.32 2 553
15 LSTAD, NDVI, Ds 0.7962 3.25 3 881
20 LSTTN, NDVI, Ds 0.8894 2.55 3 298
20 LSTAN, NDVI, Ds 0.816 3.13 4 580
20 LSTTD, NDVI, Ds 0.7751 3.36 2 560
20 LSTAD, NDVI, Ds 0.7715 3.38 3 888
40 LSTTN, NDVI, Ds 0.7991 3.27 3 298
40 LSTAN, NDVI, Ds 0.7704 3.49 4 578
40 LSTTD, NDVI, Ds 0.6432 4.05 2 559
40 LSTAD, NDVI, Ds 0.6767 3.82 3 885
1) LST, land surface temperature; NDVI, normalized difference 

vegetation index; Ds, solar declination; TN, AN, TD and AD 
refer to TERRA nighttime, AQUA nighttime, TERRA daytime, 
and AQUA daytime, respectively; RMSE, root mean squared 
error. 
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Fig. 3  Percentage of good quality TERRA land surface temperature pixels from 2003 to 2015.

4.2. Uncertainties in the estimation of soil tempera-
ture using remotely-sensed data

In this study, MODIS LST and NDVI data were used to 
estimate soil temperatures at 0, 5, 10, 20, and 40 cm.  The 
results showed that the algorithms employed were robust 
in soil temperature estimation within the top 40 cm layers 
of the soil profile.  

It is important to note that similar to all the parameter 
estimation models with optical satellite imagery, errors 
are also apparent with the soil temperature estimation 
algorithms proposed in the current study.  Clouds have 
a great influence on the estimation of soil temperature 
because only optical images acquired under clear-sky 
conditions can be used for model construction.  To 
minimize the influence of cloud cover, cloud contaminated 
pixels were masked out during model construction.  
Figs. 3 and 4 show the percentage distribution of the 
good quality of LST pixels from 2003 to 2015 which 
covers the study area, and it is observed that the good 
quality percentage for most pixels is below 60%.  This 
is capable of introducing several uncertainties in the 
resulting soil temperature estimation.  To ameliorate this 
potential source of uncertainty in remote sensing-based 
soil temperature estimation, future studies can explore 
data obtained from microwave satellite sensors which are 
capable of all-weather imaging (Fily et al. 2003; Gao et al. 

2008; Chen et al. 2011; Yang and Weng 2011; Prigent 
et al. 2016; Zhou et al. 2017, 2018, 2019).  LSTs and 
vegetation indices retrieved from microwave satellite data 
can eliminate the influence of clouds and their shadows, 
which is attendant with optical imagery like MODIS, on soil 
temperature estimation.  Additionally, geostationary optical 
satellites with their high temporal resolution can increase 
the chance of acquiring more cloud-free images for use in 
soil temperature estimation (Göttsche and Olesen 2001; 
Sobrino and Romaguera 2004; Tang et al. 2008; Freitas 
et al. 2010; Rasmussen et al. 2011; Göttsche et al. 2013; 
Duguay-Tetzlaff et al. 2015; Jiang and Liu 2015; Wu et al. 
2015; Kou et al. 2016; Mechri et al. 2016; Liu et al. 2017).

The second source of uncertainty in the soil temperature 
estimation implemented in this study is related to an in-situ 
dataset acquired from sparsely distributed meteorological 
stations.  The spatial resolution of MODIS LST and NDVI 
are 1 km.  Most pixels are located in areas of heterogeneous 
cover which exhibit different emissivity and temperature 
in space and time.  A MODIS pixel under heterogeneous 
cover is a complex mixture of vegetation, bare soil, built-up, 
water etc., and this may complicate LST retrieval and the 
relationship between in-situ soil temperature and the LST 
and NDVI parameters.  Additionally, precipitation changes 
soil water content, a parameter that also changes the soil 
heat capacity.  The higher the soil moisture, the higher 
the soil heat capacity and the lesser the fluctuations of 
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soil temperature.  Therefore, precipitation and soil water 
content can affect the spatial relationship between soil 
temperature and LST, and this has a potential to influence 
soil temperature estimation accuracy when satellite data 
are involved.  

5. Conclusion

In this paper, regional soil temperatures at depths ranging 
from 0 to 40 cm down the soil profile are estimated using 
linear regression models based on LST and NDVI obtained 
from MODIS AQUA and TERRA products together with 
ancillary Ds data.  The proposed models are validated 
against in-situ measurements obtained from meteorological 
stations at a test site located in northern China.

Our results show that LST and NDVI values derived from 
MODIS AQUA and TERRA, and Ds, are good predictors 
of soil temperatures.  Multiple linear regression models 
involving predictor variables from MODIS products have 
been proposed to be suitable in this paper.  With the 
maximum R2 and the minimum RMSE being recorded at 
depths of 5 cm or 10 cm, MODIS data can be regarded 
effective in estimating soil temperatures in the humus 
layer of the soil profile where microbial activities are most 
prominent, and where shallow-rooted crops such as cereals 
and grain legumes are confined.  This application would 
provide data of relevance to cropping calendars as selection 

of suitable planting time is related to soil temperature.
In view of the relatively poor performance of the estimation 

models used in this study at depths greater than 15 cm, the 
use of more advanced regression models such as those 
based on support vector machine, artificial neural network, 
Random Forest and adaptive-network-based fuzzy inference 
system which are capable of learning from data rather than 
relying on apparent linear correlations, could optimize the 
relationship between predictor and response variables to 
achieve a soil temperature estimation accuracy that can 
fulfill the requirements of precision agricultural initiatives.
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