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• Time-continuous LST is monitored using 
deep learning. 

• The high-density site and microwave 
data in “Earth big data” are used to 
monitor LST. 

• Based on radiation transmission, a 
multi-source data fusion approach is 
proposed. 

• The contribution of driving factors to 
LST is quantitatively assessed.  
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A B S T R A C T   

Land surface temperature (LST) is a crucial parameter in the circulation of water, exchange of land-atmosphere 
energy, and turbulence. Currently, most LST products rely heavily on thermal infrared remote sensing, which is 
susceptible to cloud and rain interference, leading to inferior temporal continuity. Microwave remote sensing has 
the advantage of being available “all-weather” due to strong penetration capability, which provides the possi
bility to simulate time-continuous LST data. In addition, the continuous increase in high-density station obser
vations (>10,000 stations) provides reliable measured data for the remote sensing monitoring of LST in China. 
This study aims to adopt the “Earth big data” generated from high-density station observation and microwave 
remote sensing data to monitor LST based on deep learning (U-Net family) for the first time. Given the significant 
spatial and temporal variability of LST and its sensitivity to various factors according to radiation transmission 
equations, this study incorporated climatic, anthropogenic, geographical, and vegetation datasets to facilitate a 
multi-source data fusion approach for LST estimation. The results showed that the U-Net++ model with modified 
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skip connections better minimized the semantic discrepancy between the feature maps of the encoder and 
decoder subnetworks for 0.1◦ daily LST mapping across China than the U-Net and U2-Net deep learning models. 
The accuracy of the LST simulation exhibited favorable outcomes in the spatial and temporal dimensions. The 
station density met the requirements of monitoring air-ground integration monitoring in China. Additionally, the 
temporal change in the simulation accuracy fluctuated in a W-shape owing to the limited simulation capability of 
deep learning in extreme scenarios. Anthropogenic factors had the largest influence on LST changes in China, 
followed by climate, geography, and vegetation. This study highlighted the application of deep learning in 
remote sensing monitoring against the background of “big data” and provided a scientific foundation for the 
response of climate change to human activities, ecological environmental protection, and sustainable social and 
economic development.   

1. Introduction 

Land surface temperature (LST) is an essential parameter in climate, 
hydrology, ecology, biology, and agricultural production and serves as 
an excellent representation of water circulation, energy and turbulence 
exchange (Wang et al., 2014; Ermida et al., 2017; Zhang et al., 2021). 
LST affects the stability and balance between land-atmosphere circle and 
has been applied to study various subjects, such as urban heat islands 
(Nogueira et al., 2022), glacier melting (Davis et al., 2023), extreme 
drought (Anderson et al., 2011), forest fires (Westerling et al., 2006), 
volcanic earthquakes (Ouzounov and Freund, 2004), surface soil mois
ture (Ghahremanloo et al., 2018), climate change (Azarderakhsh et al., 
2020), and related research (Li et al., 2023). In the context of climate 
warming, LST has been recognized as a high-priority parameter by the 
International Geosphere and Biosphere Program (Townshend et al., 
1994) and an indispensable parameter in the land biosphere designated 
by the Global Climate Observing System (Hollmann et al., 2013). 
Therefore, a high-quality time-continuous LST dataset can provide an 
effective scientific basis for studies on agricultural production, ecolog
ical protection, disaster mitigation, and economic development. 

With the development and improvement of satellite remote sensing, 
remote sensing has become the primary method for monitoring LST as it 
can estimate high-precision and long-duration LST data. There are two 
main types of remote sensing data: thermal infrared (TIR) and micro
wave. TIR estimations of LST have been extensively studied using 
MODIS, VIIRS, SLSTR, and SEVIRI satellites (Coll et al., 2012; Göttsche 
et al., 2016). However, TIR is greatly affected by clouds, rain, vegeta
tion, and terrain, especially in hilly areas, and is thus more suitable for 
plains with clear skies, few clouds, and relatively homogeneous vege
tation. LST monitoring using TIR has inferior temporal continuity owing 
to weather conditions and the underlying surface, with time scales of 8 
or 16 d in general (Zhang et al., 2021). Microwave remote sensing data 
has the advantage of being available “all-weather” with negligible in
fluence from cloudy, foggy, or other meteorological phenomena owing 
to the robust penetration capability, which can provide time-continuous 
observational data (Chen et al., 2022). However, passive microwave 
(PMW) inversion LST has a low spatial resolution (approximately 0.25◦), 
such as that of the AMSR-E, SMM/I-SMMR, and AMSR-2 satellites 
(Royer and Poirier, 2010; Mao et al., 2018; Quan and Cheng, 2020). The 
monitoring accuracy of LST using microwaves has errors of approxi
mately 1–10 k, which is worse than that using TIR of 0.2–2 k. This 
discrepancy is because microwave emissivity is more sensitive to spatial 
variation than TIR emissivity owing to the heterogeneous reflectivity 
and dielectric properties of soil moisture (Osińska-Skotak, 2007; Quan 
and Cheng, 2020). The application of microwave remote sensing 
inversion LST should be strengthened because it can provide time- 
continuous LST monitoring unaffected by complex terrain (Kohn and 
Royer, 2010; Marchand et al., 2018), which is useful for areas with 
complex terrain and variable climates, such as China. 

The main methods for LST inversion using remote sensing include 
physical models and machine learning. Physical models mainly consist 
of single-channel, split-window/dual-window, temperature and emis
sivity separation, and physics-based day/night algorithms (Wan and Li, 
1997; Malakar and Hulley, 2016). Although physical models can 

describe LST inversion mechanisms based on environmental variables 
and remote sensing, they depend on knowledge and understanding of 
the model parameters. Due to uncertainties owing to the complexity of 
physical processes and variations between periods and regions, physical 
models tend to have limited accuracy in complex environmental remote 
sensing (Yuan et al., 2020). Therefore, machine learning (ML) plays an 
important role in monitoring LST to produce continuous spatiotemporal 
LST data. Deep learning (DL), a typical cutting-edge ML framework, 
outperforms traditional models and is economical (Lee et al., 2018; 
Reichstein et al., 2019). Compared to traditional ML models, DL can 
extract multiscale and multilevel features from remote sensing by fusing 
these features, which allows for a highly accurate inversion of LST 
(LeCun et al., 2015; Zhang et al., 2016). A substantial number of DL 
frameworks, such as neural networks, artificial neural networks, 
multilayer perceptron, and convolutional neural networks, have been 
applied to simulate LST with good accuracy (Mao et al., 2008; Wang 
et al., 2013; Mao et al., 2018; Penghai et al., 2019; Tan et al., 2019). The 
U-Net family is a classical approach to framework design with extensive 
applications in image segmentation and recognition, including U-Net, U- 
Net++, and U2-Net (Ronneberger and Brox, 2015; Zhou et al., 2018; Qin 
et al., 2020). This architectural structure is founded on several inter
connected convolutional layers that assess data at various levels of ag
gregation, leading to multiscale feature coding of images, automatic 
recognition of regions of interest, and delivery of consistent technical 
support for the monitoring of surface information in intricate back
grounds (Wu et al., 2021; Lobert et al., 2023). Furthermore, the U-Net 
family has several benefits, including a straightforward architecture, 
reduced requirements for model training and inference, and rapid 
computation time, all of which make it a popular choice for environ
mental remote-sensing monitoring applications (Wang et al., 2021; 
Chen et al., 2023; Dalagnol et al., 2023). 

Highly precise and reliable labeled data are essential for DL simu
lation accuracy. The China Meteorological Administration can provide 
high-density LST observation station data for all of China (>10,000 
stations), which can improve the accuracy of the simulated and evalu
ated models in different DL frameworks. However, the density of 
observation stations in different regions is not the same, which is limited 
by the economic level and natural environment. Relevant studies have 
not been conducted on the effect of station density on LST simulation 
accuracy. According to the physical equations of radiation transmission, 
the spatiotemporal variation in LST is affected by various factors, 
including climatic and anthropogenic factors, geography, and vegeta
tion (Li et al., 2013; Karimi Firozjaei et al., 2022). In the background of 
“Earth big data,” the fusion and utilization of multiple data is crucial to 
improve the accuracy of LST monitoring. Overall, incorporating the 
equilibrium radiation equations and inputting the factors that influence 
LST into the DL model can not only combine the physical mechanism 
and the DL model to enhance the simulation accuracy but also separate 
the contribution of each feature to LST. To date, the contributions of 
each factor to the predictor variables have not been elucidated due to the 
limitations of the DL algorithm. 

This study aims to utilize “Earth big data” generated from high- 
density station observations and microwave remote sensing data to 
monitor LST using DL model for the first time. The study incorporates 
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climate, anthropogenic, geographical, and vegetation datasets to facili
tate a multi-source data-fusion approach for LST estimation based on 
radiation transmission equations. Furthermore, the contributions of 
climate-driven, anthropogenic, geographical, and vegetation variables 
to LST were analyzed. This study facilitates the integration of satellite 
and high-density ground-truth observation data sources to uncover the 
underlying knowledge and principles present in “Earth big data”, 
thereby qualitatively improving the accuracy and utility of Earth's big 
data. 

2. Study area and data 

2.1. Study area 

China is located in eastern Asia on the west coast of the Pacific 
Ocean, with a total territorial area of about 9.6 million km2 (Tan et al., 
2019). China can be divided into seven natural regions according to 
climate, geographical location, and topography (Fig. 1): (I) the warm- 
temperate desert of northwest China, (II) the temperate grassland of 
Inner Mongolia, (III) the temperate humid and sub-humid northeast 
China, (IV) the warm-temperate humid and sub-humid north China, (V) 
the subtropical humid central and south China, (VI) the Qinghai-Tibetan 
Plateau, and (VII) the tropic humid south China (Yao et al., 2018). 
>10,000 daily LST meteorological observation stations (including 
removal and exchange) were provided from 2015 to 2021 by the China 
Meteorological Administration (http://idata.cma/cmadaas). The den
sity of stations in each natural region was calculated by comparing the 
number of stations to the total area in the following descending order: 
IV > V > VII > III > II > I > VI. 

2.2. Data 

2.2.1. FY-3 satellite products 
The microwave imager (MWRI) equipped on the FY-3 satellite pos

sesses five frequencies, each with two polarization modes, enabling it to 
furnish precise information pertaining to various parameters such as 
LST, soil moisture, floods and droughts, snow depth, typhoon structure, 
and atmospheric water content, etc. (Wang et al., 2022; Zhou et al., 
2023) This study used FY-3C (2015–2019) and FY-3D (2020− 2021) 
microwave bright temperature (BT) data with 10 km spatial resolution 
(http://data.nsmc.org.cn/). A past study showed that the R2 of different 

microwave remote sensing methods in the FY-3 satellite data exceeds 
0.98, signifying a commendable concordance (Wang et al., 2022). 

2.2.2. Climate driven 
According to the equilibrium radiation equation, LST alteration is 

primarily driven by long- and short-wave radiation (Wild, 2015). LST is 
directly influenced by latent heat and sensible heat fluxes (Li et al., 
2013; Donohoe et al., 2014). Additionally, relative humidity and wind 
speed (10 m U/V) can cause turbulence on the surface, affect energy 
exchange, and subsequently modify LST (Compo and Sardeshmukh, 
2009). Cloud cover can alter the intake of shortwave radiation as well as 
the emission of surface inverse radiation, ultimately leading to changes 
in LST (Stephens and Webster, 1981). Hourly data were collected from 
the fifth-generation European Center for Medium-Range Weather 
Forecasts atmospheric reanalysis of the global climate (ERA5-Land) with 
a 0.1◦ spatial grid cell resolution (https://cds.climate.copernicus.eu). 

2.2.3. Anthropogenic driven 
Land constitutes a fundamental medium for human activities and the 

change in its utilization type is a direct manifestation of the process and 
results of human influence on the land surface. This influence can bring 
about direct alterations in surface albedo and emissivity, rendering land 
cover one of the most significant determinants of LST (Kafy et al., 2020). 
The utilization of night-light data provides insight into the low light 
intensity emanating from urban lights and traffic and facilitates the 
differentiation of human activities across various types of land use, 
which further enables the identification of changes in population density 
and aerosol concentration (Pfeifroth et al., 2018; Liu et al., 2022). The 
yearly land cover with 30 m spatial resolution was provided by China 
Land Cover Dataset (CLCD) from the Geospatial Data Institute (Yang and 
Huang, 2021), hourly albedo data with 0.1◦ resolution was provided by 
ERA5-Land, 16-days emissivity with 1 km spatial resolution was pro
vided by MODIS (MOD11A2) (https://lpdaac.usgs.gov), monthly night- 
light with 500 m spatial resolution was collected from VIIRS 
(https://www.earthdata.nasa.gov). 

2.2.4. Geography 
The geographical factors of altitude, slope, and aspect significantly 

impact the radiation balance of the land surface at varying elevations 
and orientations, ultimately influencing LST (Phan et al., 2018). The 
Geospatial Data Cloud provided the derivation of geographical 

Fig. 1. Geological information, DEM, meteorological stations distribution, and natural region divisions in China (Roman numerals: natural region divisions; Arabic 
numerals: the number of meteorological stations in the natural region). 
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information with a 90 m spatial resolution (https://www.gscloud.cn). 

2.2.5. Vegetation 
Vegetation primarily influences LST through energy and water ex

change in the atmosphere, encompassing two key domains: physical and 
chemical processes (Thakur et al., 2022). Physical processes pertain to 
the modification of the LST through alterations in surface albedo, 
ground roughness, and cooling of the adjacent environment through 
evapotranspiration (Peñuelas et al., 2009; Abera et al., 2020). 
Biochemical processes refer to the mechanisms through which alter
ations in vegetation impact long-(short-) wavelength radiation by 
regulating changes in atmospheric aerosols and greenhouse gases, 
leading to subsequent modifications in LST (Donohoe et al., 2014; Wild, 
2015). For this study, 16-d NDVI (Normalized Difference Vegetation 
Index) data with a 250 m spatial resolution were provided by MODIS 
(MOD13A2) (https://lpdaac.usgs.gov). 

In total, daily LST observations with climate-driven, anthropogenic, 
geographical, and vegetation data were collected (Table 1). All data 
were subjected to quality control measures and were interpolated to a 
grid size of 0.1◦ using the bilinear interpolation method for consistency, 
then the data underwent rotation and enhancement procedures. The FY- 
3 satellite operates in a polar orbit, with the FY-3C satellite passing over 
the local equator at 10:15 for its descending local time and 22:15 for its 
ascending local time. Meanwhile, the FY-3D satellite has a local equa
torial crossing time of 02:00 for descending and 14:00 for ascending 
(Wang et al., 2022). First, the transit time of FY-3 satellite and hourly 
ERA5-Land were recorded in Universal Time Coordinated (UTC), while 
the actual measured LST was in Beijing time and was then converted to 
UTC. Then, the transit time of FY-3 satellite was rounded to the nearest 
hour in order to be matched with the hourly auxiliary data. Non-hourly 
auxiliary data, such as NDVI, NL, Em, CLCD, and geographical infor
mation, exhibited relatively stable state over a period of time. Therefore, 
non-hourly auxiliary data from the corresponding time period was uti
lized to match the all transit time of satellite data. The combination of 
satellite and hourly auxiliary data yielded high-frequency information, 

while non-hourly auxiliary data contributed low-frequency information 
about the background field. The adaptive learning of DL model enabled 
it to dynamically obtain daily average LST for each satellite transit area. 
Finally, a total of 17,766 time-matched samples with remote sensing and 
auxiliary data values were identified to form the experimental datasets. 
It is important to recognize that the NL value is highly differentiated in 
space, which can potentially result in suboptimal outcomes. To mitigate 
these variations, an exponential transformation was applied to the initial 
values. 

3. Methodology 

The research flowchart is shown in Fig. 2 including the input data, DL 
structure, evaluation indicators, and relative importance (RI) of each 
factor for LST. The FY-3 microwave BT and auxiliary data were 
employed as input features in the DL network framework. The evalua
tion indicators were used to validate the precision of the simulated and 
measured LST. Climate-driven, anthropogenic, geographical, and vege
tation factors were excluded from the trained DL framework to explore 
the contribution of each factor to LST using the RI formula. 

3.1. U-Net family DL framework 

The U-Net family of DL models represents a semantic segmentation 
framework with a multitude of applications in image segmentation, 
primarily encompassing U-Net, U-Net++, and U2-Net. The U-Net ar
chitecture exhibits completely symmetrical traits and incorporates skip 
connections, thereby conferring the benefits of minimal input parame
ters and superior learning precision (Ronneberger and Brox, 2015). The 
U-Net++ architecture incorporates nested and dense jump connections, 
with reconfigured skip pathways specifically intended to mitigate the 
semantic gap between the feature maps of the encoder and decoder 
subnetworks (Zhou et al., 2018). The U2-Net architecture is a two-level 
nested U-structure that effectively captures a large amount of contextual 
information across various scales owing to the amalgamation of recep
tive fields of varying sizes of proposed Residual U-blocks (RSUs) (Qin 
et al., 2020). The U-Net family comprises four components: image input, 
encoding, decoding, and image output. In the present study, the 
resampled FY-3 microwave BT and auxiliary data (climate-driven, 
anthropogenic, geography, and vegetation) were incorporated into the 
DL framework. In DL model, the input batch size, number of iterations, 
loss function (Weights-MSE loss and MSE loss functions), and optimizer 
(Adam and SDG) were crucial parameters that required repeated 
adjustments. 

3.2. Evaluation indicators 

To verify whether the model was temporally predictable, we estab
lished 2015–2019 (12,892 matched samples) as the training period, 
2020 (2331 matched samples) as the validation period, and 2021 (2543 
matched samples) as the testing period. A comparison between the 
simulated and observed LST was conducted to assess the accuracy of the 
model training process and determine the most suitable architecture and 
parameters. The evaluation indicators were calculated as follows: 

RMSE =
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2
√ (3) 

Table 1 
Abbreviation and spatial and temporal resolutions of the data used in this study.  

Classification Abbreviation Data Spatial 
resolution 

Temporal 
resolution 

Remote sensing BT FY-3C/3D 
MWRI bright 
temperature 

10 km Daily 

Measured LST Land surface 
temperature 

Stations Daily 

Climate driven RH Relative 
humidity 

0.1◦ Hourly 

Wv 10 m V of wind 0.1◦ Hourly 
Wu 10 m U of wind 0.1◦ Hourly 
CC Cloud cover 0.1◦ Hourly 
LR Longwave 

radiation 
0.1◦ Hourly 

SR Shortwave 
radiation 

0.1◦ Hourly 

LHF Latent heat 
fluxes 

0.1◦ Hourly 

SHF Sensible heat 
fluxes 

0.1◦ Hourly 

Anthropogenic 
driven 

NL Nighttime light 500 m Monthly 
CLCD China Land 

Cover Dataset 
10 m Yearly 

Em Emissivity 1 km 16 d 
Al Albedo 0.1◦ Hourly 

Geographical Dem – 90 m – 
Slop – 90 m – 
Aspect – 90 m – 

Vegetation NDVI Normalized 
difference 
vegetation 
index 

250 m 16 d  
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Loss(MSE) =
1
n

∑n

i=1
(yi − ŷi)

2 (4)  

Loss(Weights− MSE) =
1
n
∑n

i=1
∣yi − ŷi∣e|yi − ŷi | (5)  

where yiis the measured LST, ŷi is the simulated LST, and n is the total 
number of samples. The simulation is considered superior when the 
RMSE, MAE, and loss function are smaller and R is closer to 1. 

3.3. Contribution calculations 

A novel technique was proposed for the contribution calculations of 
convolutional neural network and recurrent neural network models. 
However, this approach was confined to models relying on vector 
datasets and is inapplicable to models incorporating 2D images or 
hybrid datasets (Wolanin et al., 2020). This study employed a frequently 
utilized approach to determine the RI of the DL model. This technique 
involves the stepwise removal of input features and calculation of the RI 
of features through the degree of variation in error (Song et al., 2016; 
Arigbe et al., 2018; Jeong et al., 2021). RI was calculated as follows: 

Relative Importance (RI) =
MSEi

∑n

i=1

(
MSEReference − MSEi

)*100% (6)  

where MSEi is the error of a variable after removal, MSEReference is the 
error of the DL model training for all the input features, and n is the total 
number of input features. A larger error indicates that the model is more 
dependent on this feature. 

4. Results 

4.1. Descriptive statistics 

Pearson correlation coefficients were calculated to evaluate the 
strong linear or non-linear relationships between the predictor variables 

and daily LST observations. Fig. 3 displays the calculated R values for all 
variables (remote sensing, climate-driven, anthropogenic, geographical, 
and vegetation), except for CLCD, which denotes categorical attributes 
rather than specific numerical quantities. The correlation coefficient 
between LST and remote sensing data (BT) was 0.51 and that between 
LST and climate-driven LST was 0.30. For the anthropogenically-driven 
factors, the average correlation coefficient was 0.23. For geographical 
factors, the DEM was strongly correlated with LST (R < -0.7). NDVI had 
a relatively moderate correlation with LST, with an R value of − 0.51. 
Although there was a high correlation among various input factors, such 
as LR and Al, the physical mechanisms represented by each factor differ. 
LR is the amount of thermal radiation emitted by the atmosphere and 
clouds reaching the Earth's surface, whereas Al is a measure of the 
reflectivity of the Earth's surface. Despite the substantial impact of Al on 
LR, Al represents the underlying surface itself, while LR is intricately 
influenced by additional factors such as cloud cover, all of which 
significantly influence LST. 

4.2. Model calibration and validation 

In the study, the data comprising remote sensing, climate, anthro
pogenic, geography, and vegetation with 0.1◦ grid cell were input into 
the DL model to acquire LST at a satellite transit time and then fused into 
a daily LST. Notably, the Adam, SDG optimizer, Weights-MSE Loss, and 
MSE Loss functions were ultimately chosen for comparative analysis in 
the U-Net family (Table S1). Different DL model architectures, opti
mizers, and loss functions affect the accuracy of LST simulations. U- 
Net++ with the Adam optimizer and MSE loss function had the best 
accuracy of LST simulation compared to other combinations regardless 
of the training, validation, and test sets. The optimization of the model 
can be significantly affected by the magnitude of the batch size and 
number of iterations, thereby affecting the efficiency and efficacy of 
training the model. To ensure optimal simulation accuracy, a batch size 
of 16 was adopted for U-Net++ with the Adam optimizer and MSE Loss 
model (Table S2). After conducting numerous experiments, the model 
achieved convergence in approximately 170 iterations without any 
further loss. To guarantee the accuracy of the simulation, the number of 

Fig. 2. Research flowchart.  
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iterations was set to 200. 
By applying all the above predictor variables in the U-Net++

framework, the daily LST across China was simulated and validated 
(Fig. 4). From comprehensive and quantitative perspective, the U- 
Net++ for LST of the training, validation, and test sets presented 
acceptable fits, with R ranging from 0.84 to 0.87, MAE from 0.049 to 
0.056, and RMSE from 0.071 to 0.082. Although the simulated LST was 
slightly lower than the observed value, the simulation demonstrated a 
satisfactory overall outcome with applicability to the majority of China's 
regions. 

4.3. Spatial evaluation of model performance 

The model performance for the spatial patterns in different regions 
was calculated and the distribution of the test LST and point density 
plots of the observed and simulated LST in different regions are shown in 
Fig. 5. These results revealed that the spatial distribution of LST in China 
exhibited a declining trend from east to west. It can be observed from the 
point-density plots that different regions show good simulation results 
owing to the stability of the DL. In addition, the simulation results for 
region VII, which is located closer to the ocean, where the climate is 
often dominated by the sea surface temperature and monsoon, were 
relatively poor. This observation aligns with prior research outcomes as 
well (Benali et al., 2012). Moreover, the results for region V were su
perior compared to those for the other regions in this study, which is 

attributable to the simpler topographic and environmental conditions. It 
is widely acknowledged that simulation accuracy is affected by station 
density (Shen et al., 2020); however, this study collected LST data from 
>10,000 stations and the results showed that the simulation accuracy 
was essentially the same at different station densities in different re
gions. This finding demonstrates that the current density of meteoro
logical observation stations has met the needs of integrated airspace 
monitoring in China and that the layout of observation stations should 
focus on key areas and data quality in the future. 

Previous studies revealed that the CLCD significantly influences LST 
(Li et al., 2013). By computing the RMSE based on the normalized LST, a 
comparative analysis was conducted to evaluate the model's perfor
mance across diverse land-cover types. Fig. S1a shows that wetland 
exhibits the best model performance. However, the RMSE for croplands, 
forests, shrubs, grasslands, water, and snow were more centralized. In 
addition to the above CLCD, the model performance for the DEM ranges 
is shown (Fig. S1b). LST has a significant relationship with the DEM, 
with LST generally decreasing as the DEM increases. There was no sig
nificant relationship between the simulation accuracy and DEM ranges, 
with the simulations being the worst at low altitudes (<1000 m) owing 
to complex land cover types. This non-significant observation may be 
attributed to ignoring high-density station data in previous in
vestigations. The reduced number of observation stations at higher al
titudes may have impeded the model accuracy, thereby emphasizing the 
importance of their inclusion in future studies. 

Fig. 3. Pearson correlation coefficient among the predictor variables and LST.  

Fig. 4. Point density plots of observed and simulated normalized LST for the U-Net++ model: (a) training, (b) validation, (c): test 
Note: The red line is the linear regression of the scattered dots, and the black line is the 1:1line used as a reference. 
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4.4. Temporal evaluation of model performance 

For temporal analysis, the model performance at a monthly scale in 
different regions was evaluated. Fig. 6 shows violin plots of the RMSE 
distribution for each month in different regions. The average RMSE in 
China fluctuated with a W-shape pattern (Fig. 6a). At both extremely 
low and high temperatures (observed in January, May, and December), 
the RMSE attained its highest value, indicating poor model performance. 
The optimal simulation effect occurred when LST was close to the 
regional average. In addition, the RMSE for each month was concen
trated near the average, demonstrating that the simulation findings 
remained unaffected by extreme values. For different regions 
(Fig. 6b–h), the average RMSE trend in regions I, II, III, IV, and VI was 
consistent with that of China overall, showing W-shapes. The average 
alteration in the RMSE exhibited an initial increase followed by a decline 
within regions V and VII. This phenomenon was attributed to the gov
erning impact of the oceanic climate over the two regions, inducing a 
higher than average LST, ultimately culminating in suboptimal simula
tion outcomes. Notably, the RMSE box exhibited the most prominent 
amplitude in region III for almost all months but the average RMSE was 
not large. The significant influence of abrupt and intense cold episodes 
on the volatility of the regional RMSE can be attributed to the prevailing 
low temperatures and intricate terrain of the area. The findings revealed 
that the DL model exhibited limited simulation capability for extreme 
scenarios and the behavior was affected by diverse variables and was not 
solely reliant on remote sensing data. The findings generally emphasize 
the importance of incorporating temporal aspects into models to esti
mate LST. 

4.5. Contributions of climate-driven, anthropogenic, geography, and 
vegetation for LST 

The input features, including climate-driven, anthropogenic, 
geographical, and vegetative features, were used in Eq. (6) to analyze 
the RI of LST (Fig. 7). As shown in Fig. 7a, anthropogenic driving was the 
dominant factor affecting LST in China, with an RI of 40.05 %. The RIs 
for climate-driven, geography, and vegetation were 33.98 %, 31.87 %, 
and 30.72 %, respectively. The modification of the CLCD caused by 
anthropogenic activities directly impacted the transformation of surface 
matter and energy within inhabited regions. The underlying surface 
played a crucial role in the generation of climate, resulting in note
worthy consequences for the exchange of surface heat, momentum, 
water vapor, and interactions with the Earth's atmosphere. The release 
of heat generated by human activities along with intensified insulation 
of the atmosphere and inversion effects due to greenhouse gas emissions 
also had notable impacts. Meanwhile, the aforementioned effect has the 
potential to provoke direct transformations pertaining to surface albedo 
and emissivity, thereby positioning CLCD as one of the dominant factors 
contributing to the formation of LST. The monthly RI in China was 
calculated as shown in Fig. 7b. Overall, the influence of anthropogenic 
factors on LST was dominant in different months. In addition, the in
fluence of anthropogenic driving is most pronounced in winter. The 
cause of this occurrence is not solely attributable to the reduction in 
vegetation and changes in the underlying surface and can be attributed 
to the combustion of fossil fuels in winter, which contributed to an in
crease in atmospheric aerosols and the consequent alteration of radiant 
flux. Simultaneously, the geographical component, serving as a 
comparatively constant contextual element, exerted a direct influence 
on LST via the associated static constraining factors of diminishing 
elevation, aspect, and mountain peak-to-valley depth, which affected 

Fig. 5. Spatial distribution of test LST and point density plots of the observed and simulated normalized LST in different regions.  
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Fig. 6. Violin plots of RMSE by month: (a) China, (b) region I, (c) region II, (d) region III, (e) region IV, (f) region V, (g) region VI, (h) region VII.  
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LST most notably in August and September. 

5. Discussion 

5.1. Selection of input factors and time-continuous LST simulation 
accuracy 

LST is an essential geophysical parameter closely associated with the 
energy and water balance of the land-atmosphere system (Ermida et al., 
2017; Zhang et al., 2021). Based on the radiative transfer equation, the 
Sun, as the primary energy provider, interacts with the atmosphere 
(exchange layer) by transferring energy. Absorption of this energy is 
influenced by the attributes of the Earth's surface (Li et al., 2013). The 
LR and SR play critical roles in determining the total amount of energy in 
the atmosphere (Wild, 2015). CC, RH, and aerosols (NL) also affect 
energy exchange in the atmosphere (Stephens and Webster, 1981; 
Compo and Sardeshmukh, 2009; Pfeifroth et al., 2018). Moreover, Em 
and Al influence surface energy absorption, whereas LHF, SHF, and Wv/ 
Wu are key factors in determining the magnitude of energy loss (Li et al., 
2013; Kafy et al., 2020). The influence of geography (Dem, slope, and 
aspect) on incoming solar radiation varies according to elevation and 
orientation factors (Phan et al., 2018). Vegetation (NDVI) can not only 
directly block the solar radiation reaching the surface but also humidify 
and cool the surrounding environment through evapotranspiration 
(Peñuelas et al., 2009; Abera et al., 2020). Land-use type (CLCD) can 
objectively characterize the level of utilization, transformation, and 
development of the Earth's surface through human activity. This serves 
as the most visually identifiable representation of how human activities 
affect the exchange of energy on land surfaces (Zhu et al., 2022a, 
2022b). The aforementioned factors have a direct or indirect impact on 
energy exchange, which consequently influences variations in LST. Even 
when opting for the DL model, it is crucial to comprehensively consider 
the underlying physical mechanisms of the factors influencing LST 
(Zhao and Duan, 2020). 

With the development of “Earth big data,” the expeditious progres
sion of machine learning techniques has created unprecedented oppor
tunities for the development of innovative approaches to environmental 
monitoring (Yuan et al., 2020). Furthermore, DL models have demon
strated superior performance compared to conventional models, leading 
to significant advancements in the field of Earth environmental moni
toring using remote sensing data (LeCun et al., 2015). The details of the 
spatial distribution (0.1◦) of LST on a randomly selected day are shown 
in Fig. S2. The model was established based on the labels of high-density 
LST observation stations and was utilized to invert high-accuracy LST 
measurements across China. This study incorporated deep supervision 
and multiscale jump investigation into the selected U-Net++ model to 
enhance its completeness. This modification addresses the issue of un
attainable back propagation and enables the acquisition and integration 

of features from different levels through feature superposition. Conse
quently, the accuracy of the simulation was significantly enhanced, 
ensuring greater reliability. 

The “big data” has become the solid foundation of environmental 
monitoring. Notably, when utilizing high-density station data, our 
findings indicated that the density of a particular station does not have a 
significant impact on the accuracy of the simulation. This demonstrates 
that China's meteorological observation stations fundamentally fulfilled 
the observation requirements. Although the station density was lower in 
the Qinghai-Tibet Plateau region than in other regions, the accuracy of 
LST inversion was not affected, which may also be related to the uni
formity of the underlying surface. Compared with other relevant studies, 
the precision of air temperature retrieval is negatively impacted by a 
reduction in station density because the study used only 829 meteoro
logical stations spread across mainland China (Shen et al., 2020). 

5.2. Contribution of each input factor to LST 

LST is determined by anthropogenic activities, geography, and sur
face and atmospheric interactions. Surface conditions due to anthropo
genic activities, such as vegetation type, coverage, and soil moisture, 
affect LST by controlling the exchange of energy and water with the 
atmosphere (Jin and Dickinson, 2010). Alterations in the incoming solar 
radiation and atmospheric longwave radiation have a direct impact on 
LST trends by affecting the energy supply (Wang et al., 2014). As the 
primary energy input to Earth's climate system, incoming solar radiation 
serves as the prime determinant of the planet's energy budget (Wild, 
2015). Fluctuations in incoming solar radiation directly affect the LST 
trend by modifying the energy provision at the Earth's surface. Incoming 
longwave radiation impacts LST by heating the Earth's surface (Pfeifroth 
et al., 2018; Abera et al., 2020). The majority of the longwave radiation 
emitted from the surface is absorbed by the atmosphere, and a signifi
cant portion is subsequently re-emitted to raise the temperature of the 
Earth's surface. Despite the significant influence of climatic drivers on 
LST, the present investigation revealed that the most noteworthy impact 
of anthropogenic drivers on LST occurred in China. The surface plays a 
significant role in climate formation and influences the exchange of 
surface heat, momentum, water vapor, and interaction processes 
involving the Earth's gases (Krishnan et al., 2020; Ren et al., 2021). For 
instance, artificially impermeable surfaces exhibit elevated heat reten
tion properties owing to their rapid heat absorption rate, limited specific 
heat capacity, and radiation interception effects on urban structures. 
Incessant thermal emissions resulting from human activities and liveli
hoods, along with augmented greenhouse gas discharge, fortify atmo
spheric insulation and temperature inversion effects (Yang and Huang, 
2021). All these phenomena exert a direct, indirect, and continuous 
influence on the heat balance and spatial distribution of the urban area 
and its vicinity, consequently impacting LST. As reported by the IPCC 

Fig. 7. Relative importance of input features for specific (a) region, (b) month.  
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AR6, there is strong evidence to suggest that human activities exert a 
substantial influence on the climate system across various dimensions 
(IPCC, 2021). Vegetation is a crucial indicator of local ecological 
sensitivity and vulnerability and exerts an irreplaceable influence on 
LST alteration. Vegetation effectively diminishes the amount of solar 
radiation transmitted to the ground through the reflection and absorp
tion of a portion of the solar radiation (Ren et al., 2021). Generally, the 
interplay between natural and anthropogenic variables engenders 
intricate and indeterminate changes in LST, warranting continued and 
exhaustive long-term surveillance and investigation. 

5.3. Limitations and developments 

Compared to PMW remote sensing, TIR remote sensing is the optimal 
approach for acquiring LST data, exhibiting superior inversion accuracy. 
However, LST applications of TIR in various fields are severely limited 
by their inability to penetrate clouds. A previous study indicated that the 
average cloud cover on a global scale has the potential to exceed 70 %, 
leading to a potential reduction in the mean annual LST by 0.2–2 K 
(Mercury et al., 2012). Several methods have been developed to 
reconstruct time-continuous LST (Xu and Cheng, 2021; Mo et al., 2021; 
Zhang et al., 2021; Zhu et al., 2022a, 2022b): (1) spatial and temporal 
interpolation methods, (2) statistical regression methods, (3) surface 
energy balance methods, (4) PMW-based LST methods, and (5) machine 
learning. Currently, there are various all-weather reliable LST products 
with high spatiotemporal resolution in China, including: TRIMS (Ther
mal and Reanalysis Integrating Moderate-resolution Spatial-seamless, 
CSTR: 18406.11.Meteoro.tpdc.271252), ELITE (Essential thermaL 
Infrared remoTe sEnsing, CSTR: 18406.11.Meteoro.tpdc.271657) LST 
product datasets (Zhou et al., 2017; Zhang et al., 2019; Quan and Cheng, 
2020; Quan et al., 2020; Xu and Cheng, 2021; Zhang et al., 2021). 
Although advancements have been made in the reconstruction of LST for 
cloud-covered pixels, the techniques presently suggested continue to be 
constrained in microwave monitoring by suboptimal precision and 
limited practicality. In this study, within the framework of “Earth big 
data”, high-density station data and microwave data were utilized to 
enhance the capability of microwave monitoring of LST to the greatest 
extent possible. The amalgamation of TIR and PMW-merged LST is 
considered the optimal solution for creating an all-weather LST product 
at the present technical level. This approach is favored because of the 
complementary properties of TIR- and PMW-based LST (Xu and Cheng, 
2021). Nevertheless, it is necessary to continue researching and devel
oping methods to overcome surface penetration depth disparities be
tween TIR- and PMW-based LST data while also improving the accuracy 
and resolution of PMW-based LST estimates (Li et al., 2023). Geosta
tionary satellites should be strengthened in LST reconstruction, such as 
Himawari-8, FengYun-4 A, and Geostationary Operational Environ
mental Satellite R-Series, which improve temporal resolution compared 
with conventional sensors (Yamamoto et al., 2023). 

The temporal simulation analysis results demonstrated a discernible 
and dynamic pattern fluctuating in a W-shape in China. Temporal LST 
simulations should be considered in future studies using DL models, such 
as the long short-term memory (LSTM) model. Notably, the structure of 
the DL model is intricate and encompasses numerous parameters, 
necessitating reliance on operational expertise and multiple iterations 
during the debugging phase, which consequently contribute to a certain 
reduction in the overall work efficiency (Wu et al., 2022). When the 
Adam algorithm with a rapid rate of convergence to improve computing 
efficiency was utilized as the optimizer in the present study, the loss 
function value of the model experienced the most precipitous decline in 
the training set, ultimately stabilizing at a satisfactory level (Zhou et al., 
2018; Zheng et al., 2022). 

The field of LST remote sensing monitoring has developed a plethora 
of refined physical models that are deeply rooted in systematic physical 
theories (Yuan et al., 2020). Currently, the potential of DL to supersede 
physical models is debated. DL has frequently been employed as a 

complementary tool to conventional physical models because of its 
ability to accurately mimic physical processes and streamline the cal
culations required for LST remote sensing. In future LST simulations, 
integrating a physical model with DL may enhance the accuracy of 
simulations (Mao et al., 2007; Mao et al., 2008). Uncertainties 
frequently manifest in the physical parameters, leading to inaccuracies 
in their outputs. By incorporating actual observations and supplemen
tary data, the implementation of DL techniques has the potential for 
model output calibration. For instance, the accuracy of maximum air 
temperature simulations can be improved by incorporating Global Land 
Data assimilation system simulations (e.g., SM content and albedo) into 
the DL architecture (Di et al., 2016; Shen et al., 2020). To adhere to the 
principles of physical laws and mechanisms, DL architectures must be 
formulated for LST remote sensing, which entails a profound fusion of 
physics and DL (Schütt et al., 2017). Furthermore, physical regulariza
tion constraints are incorporated into the loss function of the DL models, 
leveraging insights from physical mechanisms and knowledge to ensure 
that LST modeling maintains physical consistency. The loss function, 
which is limited by physical constraints, is subsequently optimized to 
achieve a satisfactory outcome that exhibits superior model perfor
mance and adherence to physical consistency (Yuan et al., 2020). 
Overall, the combination of physical simulation and DL can not only 
improve the accuracy of LST but also improve the physical interpret
ability in LST remote sensing monitoring. 

5.4. Implications for management 

The findings of this study have significant implications for manage
ment and can be summarized into three key points. First, the present 
density of meteorological stations is sufficient for remote-sensing 
monitoring, thereby achieving the desired accuracy. Second, although 
microwave remote sensing has the advantage of being able to continu
ously monitor surface information through clouds for extended periods, 
its spatial resolution is significantly inferior to that of TIR remote 
sensing. There is thus a need to reinforce the establishment of micro
wave remote sensing technology to enhance its spatial resolution ca
pabilities. Finally, LST plays a crucial role as a variable in the process of 
water heat exchange and energy balance and should be strengthened for 
use in relevant studies. For example, time-continuous LST can accurately 
depict the state of surplus and deficiency of soil moisture. It operates 
based on the principle that the heat capacity of water is higher than that 
of other media. Furthermore, this technique posits that the greater the 
temperature variance between day and night, the more pronounced the 
water shortage and drought, which in turn allows for the direct assess
ment of actual drought and flood conditions. However, studies on these 
topics are scarce. 

6. Conclusion 

In this study, the U-Net family DL model was employed to estimate 
LST for the first time. Microwave remote sensing data derived from the 
FY-3C/3D satellites and high-density station observations (>10,000 
stations) were input into the DL model. According to radiation trans
mission, climate, anthropogenic, geographical, and vegetation datasets 
were considered to facilitate a multi-source data fusion approach for LST 
estimation. Compared with the U-Net and U2-Net models, the U-Net++

model with modified skip connections considered the non-linear rela
tionship more effectively, leading to an improved overall model per
formance. The precision of the LST simulation demonstrated 
advantageous results in both spatial and temporal domains, as evi
denced by the validation data. Through the utilization of high-density 
stations, our research indicated that station density does not signifi
cantly affect inversion precision. In addition, the average RMSE change 
in China fluctuated in a W-shape, indicating that the simulation accu
racy exhibited very strong monthly changes. Finally, the results showed 
that anthropogenic driving was the dominant factor affecting LST in 
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China, with an RI of 40.05 %. This is because the CLCD caused by human 
activities has a direct impact on the transformation. The RIs of climate- 
driven, geographical, and vegetation factors were 33.98 %, 31.87 %, and 
30.72 %, respectively. 

It should be noted that there were several limitations to our inves
tigation which future research studies should seek to improve. First, the 
combination of LST data obtained from thermal TIR and PMW mea
surements is widely recognized as the most viable approach for creating 
an all-weather LST product using existing technology. Second, the LST 
simulation accuracy in our study changed over time, and temporal LST 
simulations should be considered in future studies with DL models, such 
as the LSTM model. Finally, our model did not simulate LST accurately 
under extreme temperature conditions because the DL model is not 
constrained by physical conditions. It is highly recommended that future 
studies should integrate physical models and DL for environmental 
remote-sensing applications. This integration can be applied through 
various methods, including DL calibration using physical model outputs, 
DL architecture design guided by physical principles, and DL modeling 
constrained by physical assumptions. In conclusion, although the utili
zation of efficient multi-source datasets can enhance the precision of 
models, the scientific elimination of variables that are susceptible to 
causing uncertainties in remote sensing monitoring accuracy remains a 
major challenge. 
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