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Abstract—Data assimilation has been demonstrated as the
potential crop yield estimation approach. Accurate quantification
of model and observation errors is the key to determining the
success of a data assimilation system. However, the crop growth
model error is not fully taken into account in most of the previous
studies. The objective of this study is to better quantify the model
uncertainty in the data assimilation system. First, we calibrated
a crop growth model and inferred its posterior uncertainty
based on the Global LAnd Surface Satellite (GLASS) 250-m
leaf area index (LAI) product, regional statistical data, station
observations, and field measurements with a Markov chain Monte
Carlo (MCMC) method. Second, the model posterior uncertainty
was used in the ensemble Kalman filter (EnKF) algorithm to
better characterize the ensemble distribution of model errors.
Our results indicated that the proposed Bayesian posterior-based
EnKF can improve the accuracy of winter wheat yield estimation
at both the point scale (the coefficient of determination R?*
value increasing from 0.06 to 0.41, the mean absolute percentage
error (MAPE) value decreasing from 12.65% to 7.82%, and the
root-mean-square error (RMSE) value decreasing from 987 to
688 kg-ha™!) and the regional scale (R? value from 0.30 to 0.57,
MAPE value from 19.67% to 10.13%, and RMSE value from
1275 to 695 kg-ha') compared with the open-loop estimation.
Qur analysis also indicated that the Bayesian posterior-based
EnKF can perform better compared to the standard Gaussian
perturbation-based EnKF. The proposed framework provides an
important reference for crop yield estimation at the regional scale
in similar agricultural landscapes worldwide.
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I. INTRODUCTION

EGIONAL crop yield estimation and forecasting are

essential for agricultural production activities and food
security. Especially in recent years, with the frequent occur-
rence of extreme weather events, regional political turmoil and
military conflicts, and the COVID-19 pandemic impact on the
food system, the food crisis threats the nutrition of millions of
people around the world [1]. Therefore, timely and accurate
crop yield monitoring over large spatial regions can help guide
farm production, food processing, transport, and logistics, thus
enabling the necessary measures to address the challenge in
food supply chains [2], [3], [4].

Remote sensing data can provide regional biophysical infor-
mation on crop growth rapidly and frequently. The data assim-
ilation method, combining the ability to acquire large-scale
information from remote sensing and the dynamic mechanism
process of crop growth models, has been a promising way to
estimate regional crop yield [S]. There are three main types
of data assimilation methods: variational, Kalman filtering,
and Bayesian sampling-based approaches [5]. The variational
method reinitializes the input parameters or initial state of
the crop growth model by minimizing the difference of state
variables from remote sensing and model forecasting, which
are usually weighted by their inverse uncertainty [6], [7].
In variational algorithms, information from the specific assim-
ilation temporal window needs to be used in the data assimila-
tion system [8]. However, Kalman filters estimate a weighted
average of the system state and update it at every time step
from the model forecasting state and the new remote sensing
observation [9], [10], [11]. The ensemble Kalman filter (EnKF)
applies an ensemble of model states to represent the error
statistics of the model estimate and has proven to efficiently
handle strong nonlinear dynamics and large state spaces [12].
Bayesian Monte Carlo-based methods, e.g., the Markov chain
Monte Carlo (MCMC) and particle filter (PF) algorithms [13],
can infer the posterior distributions of the model parameters
and model predictions based on sampling methods especially
when the model is nonlinear and when the noises are not
Gaussian.
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Data assimilation has effectively improved yield estimation
for different scales by integrating remote sensing informa-
tion with crop growth models. Wu et al. [8] proposed a
new algorithm named a variable time window and four-
dimensional extension-based Ensemble Square Root Filter
(VW-4-DEnSRF) combining the advantages of 4-D variational
(4-DVar) and ensemble filtering methods and achieved good
performances for winter wheat yield estimation at both the
single point level and county level with root-mean-square error
(RMSE) of 801.4 and 416.7 kg-ha~!. Kang and Ozdogan [14]
addressed that accurate crop model calibration is significant
for data assimilation system and proposed a hierarchical data
assimilation framework enabling maize yield estimation at
field levels across large areas with the accuracy of 79%-—
91% by calibrating the crop model with MCMC method at
the county scale before applying the EnKF algorithm for
field/pixel level. Ziliani et al. [13] used a PF scheme to
integrate the high spatiotemporal resolution satellite data into
agricultural production systems simulator (APSIM) model for
early season within-field maize yield prediction with high
accuracy (relative RMSE of 12%). Overall, the coupling of
remotely sensed information with crop growth models can
be done in various ways, such as forcing the model to use
remote sensing-based variables [15], [16], recalibrating the
model parameters [7], [17], and updating the model state
variables based on satellite observation [10], [11]. While repre-
sentative studies that have been published are well-established
theoretically and have shown promising results in region-
specific applications, they often lack a generalized scheme for
crop model calibration or error quantification. For instance,
some studies rely on a subjective Gaussian noise to set the
model error/uncertainty in assimilated systems. This hinders
the application of these methods to different crop growth
models, different remote sensing data, and other different crop
growth conditions as the model parameters and uncertainties
can vary widely.

The uncertainty in data assimilation systems usually arises
from three aspects: model structure, model parameters, and
remote sensing observations [5]. The model structure’s uncer-
tainty is difficult to be estimated quantitatively and separately.
Therefore, the model parameter calibration and uncertainty
analysis are a partial compensation for the uncertainty in
the model structure and other model parameters that are not
included in calibration [18]. The uncertainty in remote sensing
observation can be estimated by comparing a limited dataset
of in situ measurements with the remotely sensed estimates
or provided by the satellite products established under general
guidelines. In addition, optimized observation errors can be
achieved via improved algorithms within the data assimilation
system [19], [20], [21].

It is well-recognized that the quantitative uncertainty assess-
ment of the crop growth model is essential for an agricultural
data assimilation application [5], [22]. However, previous
studies often set model uncertainty with an experience-based
Gaussian perturbation based on local calibration [23], [24],
leading to potential subjective errors. In addition, the uncer-
tainties of crop growth models given in previous studies
based on empirical or representative observation sets are
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spatially identical, i.e., the model errors are considered to
be spatially homogeneous, which may not be reasonable for
model applications in large regions. Remote sensing data
help quantify the uncertainty of crop growth models spa-
tially, better express the spatial heterogeneity of model errors,
and thus improve the accuracy of the data assimilation system.
Theoretically, the state-of-the-art model calibration methods
represented by MCMC can be perfectly combined with data
assimilation theory under the Bayesian framework to provide
the uncertainty distribution of model parameters and their
corresponding predictions [5]. Toshichika et al. [25] calibrated
a large-scale process-based model for rice simulation with an
MCMC method and selected the simulated mean values from
the 95% confidence interval of the posterior distribution for
model validation and uncertainty assessment. Ran et al. [26]
and Sexton et al. [27] showed the application framework
with the AquaCrop model and demonstrated that the MCMC
method helps quantify the uncertainty of the crop growth
model. Although the MCMC method has been applied in the
crop model calibration for parameter posterior inference [14],
the uncertainty information of Bayesian posterior of model
parameters has not been adequately taken into account in data
assimilation algorithms. A growing number of recent studies
calibrate crop growth models based on the advanced Bayesian
method, e.g., various MCMC algorithms, in data assimilation
systems [28]. However, they have not fully demonstrated the
effective incorporation of crop growth model uncertainty into
assimilation algorithms and, more importantly, its improve-
ment in the performance of data assimilation systems.

This study introduces the Bayesian posterior uncertain infor-
mation from MCMC calibration into an EnKF data assim-
ilation framework and validates it by assimilating remote
sensing leaf area index (LAI) into the WOrld FOod STudies
(WOFOST) model for winter wheat yield estimation. The
model uncertainty obtained by the MCMC algorithm is
expressed in the form of an ensemble, which can be innately
combined with the EnKF algorithm without introducing
approximation error. The objective of this study is as follows:

1) to calibrate the WOFOST model and infer its posterior
uncertainty based on remote sensing data, regional statis-
tical data, station observations, and field measurements
with an MCMC method;
couple the Bayesian posterior uncertainty with the EnKF
algorithm, and then assimilate the remote sensing data
into the WOFOST model at the single-point and regional
scale for yield estimation;
to evaluate whether the proposed Bayesian posterior-
based EnKF approach could improve the winter wheat
yield estimation accuracy at both the scale and regional
scales compared with the standard EnKF algorithm
with the model ensemble generated from Gaussian
perturbation.

2)

3)

II. DATA PREPARATION AND PREPROCESSING
A. Study Area

As one of the major grain-producing provinces, Henan
produces about one-tenth of China’s total grain. In particular,
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Fig. 1.

Henan is China’s most crucial wheat-producing area, account-
ing for a quarter of the total planting area and wheat produc-
tion. Henan is located in the central part of China (31.38°N-
36.37°N, 110.35°E~116.65°E). The terrain is high in the West
and low in the East, with mountainous areas in the West,
Northwest, and Southeast, plains in the central and eastern
parts, and basins in the Southwest (Fig. 1). As a whole,
it belongs to the continental monsoon climate that transitions
from the north subtropical zone to the warm temperate zone,
with pronounced seasonal temperature differences. Winter
wheat in Henan is usually sown in October, heads from late
April to early May, and matures from late May to early June.
The winter wheat mask data used in this study, as shown in
Fig. 1, are generated by Huang et al. [29] based on the time
series of temporal and spectral features of Sentinel-2 data with
a spatial resolution of 10 m.

B. Remote Sensing Data

Global LAnd Surface Satellite (GLASS) 250-m LAI product
(version 6) [30] was used in this study for crop growth model
calibration and data assimilation. The dataset is a spatiotem-
poral continuous LAI product generated from MODIS data
using the bidirectional long short-term memory (LSTM) deep
learning model, with a temporal resolution of eight days and
the spatial resolution of 250 m from 2000 to 2021. We mainly
use the GLASS LAI data within the growth period and the final
yield data of the previous year to calibrate the crop growth
model and then use the next year’s LAI product for data
assimilation and yield estimation. Specifically, only a subset
of time-series GLASS LAI during the growth period was used
for calibration or data assimilation. We dynamically selected
the previous date corresponding to the time-series GLASS LAI
peak date as the starting point and set the end date to DOY
137. For most cases, six or seven LAI observations per year
were used, corresponding to dates from late March or early
April to late May. This is to avoid poor impacts on crop growth
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Study area of Henan, China. The Thiessen polygon zones within Henan are constructed based on agrometeorological stations.

model calibration or data assimilation introduced by relatively
underestimated remote sensing LAI in the early growth period
of winter wheat.

C. Weather Data

Agrometeorological indicators from 1979 to present derived
from reanalysis (AgERAS) is a global weather dataset tailored
for agriculture, and it provides daily surface meteorological
data with 0.1° x 0.1° spatial resolution for the period from
1979 to the present as input for agriculture and agroecological
studies [31]. In this study, 10-m wind speed (m-s~1), 2-m
temperature (K), precipitation flux (mm-day "), solar radiation
flux (J-m~2.day~"), and vapor pressure (hPa) were extracted
from the dataset to generate the meteorological input data for
the crop growth model.

D. Field Observations

Observations of the phenological development of winter
wheat from 2017 to 2021 were collected from 35 agrome-
teorological stations in Henan (Fig. 1), including the date of
emergence, anthesis, and maturity. This data were used for
calibrating the parameters related to the development stage
(DVS) simulation.

During the maturity period of winter wheat in 2020 and
2021, 24 fields in northeastern Henan were selected for two
consecutive years of yield measurement (Fig. 1). Five quadrats
were arranged in each field (Fig. 2). For each quadrat, the
average plant density and the average number of ears per
plant were first measured. Then, 20 wheat ears were removed
for threshing, followed by counting the number of grains,
weighing, and measuring moisture content. Finally, the yield
was estimated according to the following equation:

Y =N, xN~x%@&a—ox0% (1)
— {Vear grain 1000 .
where Y is the estimated yield without moisture, N, is the

number of ears per unit area calculated from plant density
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Fig. 2.
quadrats in the field; (b) plant density measurements; and (c) picking winter
wheat ears.

and the number of ears per plant, Ny, is the number of
grains per ear, Moy is the 1000-grain weight, C is the water
content in weight, and 0.85 is an empirical ratio of actual
harvestable yield to theoretical yield. In this study, field yield
was considered the median of the estimated yields of the
five quadrats to avoid the influence of extreme values due to
measurement errors.

E. County Statistics

The county statistical yield of Henan from 2007 to
2020 was from Henan Survey Yearbook (http://hazd.stats.gov.
cn/dcsj/list-226.html, accessed on May 1, 2022). The county-
level yield was estimated by dividing the total production by
planting area, and all data were calculated in units of kg-ha™!.
To be consistent with the simulation results, all yield data
were converted to dry weight by the standard moisture content
of 12.5%.

IIT. METHODOLOGY

We assimilate the GLASS LAI data into the WOFOST
model with the Bayesian posterior-based EnKF framework
at field-level point and county-level regional scales, respec-
tively. For the point scale, field-measured yields and the
field-corresponded GLASS LAI data of 2020 were used for
calibration and model uncertainty assessment based on an
MCMC method. Then, the corresponding GLASS LAI data of
2021 were assimilated into the calibrated WOFOST model for
yield estimation. For the county-level regional scale, first, the
GLASS LAI data were calculated zonally at county boundaries
and the 10-km meteorological grids to obtain the mean and
standard deviation, respectively. Then, the county-level statis-
tical yield and the calculated county-level GLASS LAI infor-
mation for 2017-2019 were used for calibration and model
uncertainty assessment based on an MCMC method. Finally,
the calculated 10-km GLASS LAI information of 2018-2020
was assimilated into the calibrated WOFOST model for yield
estimation (Fig. 3).

A. WOFOST Model

The WOFOST model is a mechanistic process-based model
that describes crop growth considering crop phenology devel-
opment, leaf development, light interception, CO? assimila-
tion, root growth, transpiration, respiration, partitioning of
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assimilates to the various organs, and dry matter forma-
tion [32]. Winter wheat yield is expressed as the total-level
dry weight of storage organs (TWSO) in the WOFOST model.
TWSO represents the weight of grains with zero moisture con-
tent. This study implements the WOFOST model in the Python
environment based on the python crop simulation environ-
ment (PCSE) package (https:/github.com/ajwdewit/pcse.git,
accessed on March 22, 2021).

In this study, ten parameters [emergence date (IDEM),
the thermal time from emergence to anthesis (TSUM1), the
thermal time from anthesis to maturity (TSUM?2), initial total
crop dry weight (TDWI), the life span of leaves growing at
an average temperature of 35 °C (SPAN), specific leaf area
as a function of the development stage (SLATB), maximum
CO? assimilation rate as a function of the development stage
(AMAXTB), the fraction of total dry matter to leaves as a
function of the development stage (FLTB), the fraction of total
dry matter to storage organs as a function of the development
stage (FOTB), and the fraction of total dry matter to stems as
a function of the development stage (FSTB)] in the WOFOST
model are selected for calibration. Since the value of some
parameters is in the form of a list, we use nine single-
valued variables (8_IDEM, o_TSUMI, o_ TSUM2, «_TDWI,
a_SPAN, o_SLATB, o_ AMAXTB, «_v, and B_DVS) to
control these ten parameters for relative consistency of unit’s
digit. The details are listed in Table I.

B. MCMC Method

MCMC is a family of algorithms for generating samples
from an unknown posterior distribution through an equilibrium
Markov chain [33]. MCMC makes it tractable for parameter
calibration and uncertainty analysis of complex process-based
models based on their prior information and observational
likelihood within the Bayesian framework.

The DiffeRential Evolution Adaptive Metropolis (DREAM)
algorithm is one of the state-of-the-art MCMC methods. It runs
multiple chains in parallel and uses a self-adaptive differential
evolution sampling algorithm [34]. In this study, we use
the DREAM algorithm for the parameter calibration of the
WOFOST model under the Python environment with SPOTPY
(https://github.com/thouska/spotpy.git, accessed on August 1,
2022). The algorithm proceeds as follows [35], [36].

1) Specify the prior distribution of parameters p() and like-
lihood distribution L() of observations to approximate
the target posterior distribution 7 ().

The randomly selected initial point for each chain from
the prior distribution of parameters, denoted as X,
Xo = {x§,x},....x[}. For x! in X,, the subscript
indicates the rth iteration, and the superscript indicates
the ith chain. N is the total number of chains.
Continue to generate candidate point of parameters
space with N chains in parallel, and generate a proposal

— oyl 2 N _
Xiyip = {x x ,x), ) based on X, =

2)

t+1,p> t+l,p> 0t
{x,',xf, R x,N }. The DREAM algorithm dynamically
uses subspace sampling with multiple chains. Subspace
sampling means that only selected dimensions of x! will
be updated randomly each time a proposal is generated.
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Fig. 3. Flowchart for assimilating the GLASS LAI into the WOFOST model with the Bayesian posterior-based EnKF framework.

Let d be the dimension of x;', the d* be the length
of the selected dimensions. For each chain, update the
parameters in the following steps sequentially.

a)

b)

Select the d*-dimensions. First, generate a vec-
tor CR = [l/ncr,2/ncr,...,ncr/ncr], ner is a
parameter determining the number of crossover
proposals. If ncr = 1, all dimensions of x! will
be updated jointly, i.e., d* = d. Then, generate a
random value z from a uniform distribution U (0, 1)
and generate a random value cr from CR. Finally,
repeat the last step d times independently; for each
time, if z < cr, the dimension of xﬁ corresponding
to this time is selected.

Propose a candidate point. The x! 41, 18 proposed
by a jump Ax;, that is, x;., , = x; + Ax;. Let
A be a subset of the selected d*-dimensions, the
Ax! can be calculated from the collection of chains
with differential evolution as follows:

5,
Ax; 4 = | MV, ap) Z(X?,’A - xt,’A)
= @)
+&,a; #b; £
Ax; 4 =0

where A, is a d*-dimensional diagonal matrix, A, =
diag(1+X; 1, I +A,2,..., 1 +4; 4+), and the values
of A1, A2,..., A 4-are sampled independently
of a uniform distribution U(—0.1,0.1). ¢, is a
d*-dimensional vector, the values of ¢, are sampled

independently of a norm distribution N (0, 107%).
a and b are vectors consisting of d integers drawn
without replacement from [1,2,..., N], and the
subscript j represents the jth element of the vector.
Y@,.av) is the jump rate, and its value is related
to a random number between 0 and 1, denoted as
z; = random(0, 1). Then,

2.38 ~ 02
79 Zt —_ .
Yonan = § \/28:df 3)
1, z; < 0.2

where §; is the number of chain pairs used to
generate the jump, §; is a random integer sampled
from [1, 2, ..., 8], the default value of § is three,
and 26 + 1 < N. d; is the length of the selected
dimensions for the rth iteration.

c) Accept the proposal with probability. For each

chain, the probability of x},, = xj,, , is calcu-

lated as o according to the metropolis rule (the
following equation):

7 (x})
p(xi-&-l.p)l‘ (M (x§+1~1’))
p(xi)L(M(x7))

where M is a model that transforms parame-
ters into simulations of the same dimension as

o = min| 1,

=min|{ 1,

“)
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TABLE I
PARAMETER CONFIGURATION FOR MODEL CALIBRATION

Optimized Values and

Parameters Description Initial Values® .
Implementation
IDEM Emergence date Obs_IDEM Obs_IDEM + f_IDEM
(day of the year)
The thermal time from
TSUMI1 emergence to Prior  TSUM1 Prior  TSUMI1 x o TSUM1
anthesis (°C-d")
Tsump  [he thermal time from anthesis b0 gy Prior TSUM2 x o TSUM?2
to maturity (°C-d™') - - -
Initial total crop dry
TDWI weight (kg-ha™!) 50.0 50.0 x o_TDWI
The life span of leaves growing
SPAN at an average temperature of 35 °C 31.3 31.3 x a_SPAN

(days)

Specific leaf area as a function

SLATB of development stage (ha-kg™';-)

Maximum CO? assimilation rate
as a function of the development
stage of the crop (kg-ha™-hr'’;-)

AMAXTB

Fraction of total dry matter to
leaves as a function of DVS

(kg-kg';-)

FLTB

Fraction of total dry matter to
storage organs as a function of
DVS (kgkg's-)

FOTB

Fraction of total dry matter to
stems as a function of DVS

(kgkg':-)

FSTB

[0.00, 0.00212, [0.00, 0.00212 x a_SLATB,

0.50, 0.00212, 0.50, 0.00212 x o_ SLATB,
2.00, 0.00212] 2.00,0.00212 x o_ SLATB]
[0.00, 35.83, [0.00, 35.83 x o AMAXTB,
1.00, 35.83, 1.00, 35.83 x o AMAXTB,
1.30, 35.83, 1.30, 35.83 x . AMAXTB,
2.00, 4.48] 2.00, 4.48 x o_ AMAXTB]
[0.000, 0.650, [0.000, 0.650 x o v,
0.100, 0.650, 0.100, 0.650 x o._v,
0.250, 0.700, 0.250, 0.700 x o._v,
0.500, 0.500, 0.500, 0.500 x o._v,
0.646, 0.300, 0.646, 0.300 x o._v,
0.950, 0.000, 0.950 + B_DVS, 0.000,
2.000, 0.000] 2.000, 0.000]
[0.000, 0.000, [0.000, 0.000,
0.950, 0.000, 0.950 + B_DVS, 0.000,
1.000, 1.000, 1.000 + B_DVS, 1.000,
2.000, 1.000] 2.000, 1.000]
[0.000, 0.350, [0.000, 1-0.650 x o._v,
0.100, 0.350, 0.100, 1-0.650 x a._v,
0.250, 0.300, 0.250, 1- 0.700 x a_v,
0.500, 0.500, 0.500, 1-0.500 x v,
0.646, 0.700, 0.646, 1-0.700 x o, v,
0.950, 1.000, 0.950 + B_DVS, 1.000,
1.000, 0.000, 1.000 + B_DVS, 0.000,
2.000, 0.000] 2.000, 0.000]

2 The initial value of these parameters was taken from the default sets for the winter wheat variety “Winter wheat 105”
(https://github.com/ajwdewit/ WOFOST _crop_parameters, accessed on 22 March 2021). The values of IDEM, TSUMI1 and

TSUM2 are observation-based.

observations. In practice, the x| is determined
using a random number z, sampled each time
independently of U (0, 1)

i _
X1 = [

d) Assess the convergence of chains by the R-statistic
[37]. The samples from the collection of chains

X, W <a
AR )

X, Zq > Q.

X, after convergence are essentially equivalent to
sampling from the target posterior distribution 7 ().

C. Calibration of the WOFOST Model

The calibration of the WOFOST model can generally be
divided into two steps, the calibration of phenological param-
eters and the calibration of other crop parameters. For the
WOFOST model, the relative accuracy of phenology is the
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basis for crop simulation, but this process is a less-mechanistic
module mainly driven by effective thermal time. Therefore,
in this study, we first established a Thiessen polygon based on
the observation data of agrometeorological stations to calibrate
the model phenology zonally, and the posterior distribution
of the calibrated parameters was used as the prior information
of the following crop parameters calibration along with other
selected parameters. In this study, the DREAM algorithm
performed the above two calibration steps. As long as the
prior and likelihood distribution is given, the posterior of the
parameters can be obtained by iterative sampling.

1) Preliminary Calibration and 1 Uncertainty Assessment of
Phenological Parameters: We first use the date of emergence
from each agrometeorological station to set the value of IDEM
(Obs_IDEM in Table I) and then the dates of anthesis and
maturity to calibrate the parameters TSUMI and TSUM2 of
WOFOST (Prior_ TSUMI1 and Prior_ TSUM?2 in Table I).
For simulation grids without agrometeorological stations, the
parameter values are set to be the same as the calibration val-
ues of the nearest station, which can be done by constructing
a Thiessen polygon (Fig. 1).

The priors of TSUM1 and TSUM2 are set to obey the
uniform distribution U (200, 1000) and U (400, 1500), respec-
tively. We assumed that the observed errors of anthesis and
maturity dates were normally distributed with zero mean
and standard deviation of 1.5 days. Therefore, the likelihood
function for the phenological DVS is set as follows:

1 1
kp 1
Q2m)Z |Zpl?
where D is a 2-D vector of WOFOST simulated DVS dates,
i.e., anthesis and maturity dates simulated based on given
TSUMI and TSUM2. Similarly, D, is the corresponding
observations of D. kp is the dimension of D, and kp = 2 for
this study. Xp is a 2-D diagonal matrix, Xp = diag(1.5, 1.5).

In practice, the logarithm likelihood is used more generally

1 Ty-—I
L(D) = ¢~ $(D=Daw) " E5 (D=Dasy)

(©)

1
log L(D) = —3(D - Dov) "Z5 (D — Dops)

k 1
— 7[) log(2m) — 3 log(|Zpl). (7)

2) Crop Parameters Calibration: Crop parameters listed in
Table I including the preliminarily calibrated IDEM, TSUMI,
and TSUM2 are calibrated together based on the observation
of remotely sensed time-series LAI and the field-measured
or county statistical yield. The priors of these parameters are
assumed to be normally distributed (Table II).

For the time-series LAI data and single-valued yield data,
we assume that their errors conform to a multivariate Gaussian
distribution and a univariate Gaussian distribution with zero
mean, respectively. The log-likelihood function is established
as follows:

1
log L(LAI) = —5(LAI—LAlobs)TzggI(LAI—LAlobS)

_ R
2

1/Y — Yo \* 1
logL(Y) = —3 <> — —log(27w) —loge  (9)
o 2

1
log(2m) — 3 log(|Zpa1]) 8)
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TABLE II
PRIOR DISTRIBUTION OF CROP PARAMETERS

Parameters Mean Standard deviation®

f IDEM 0 1.5

a_TSUMI 1 std TSUM1

o_TSUM2 1 std_ TSUM2
o TDWI 1 0.3
a_SPAN 1 0.05
o _SLATB 1 0.05
o AMAXTB 1 0.05
oV 1 0.05
B_DVS 0 0.08

2 The standard deviation for o. TSUM1 and o TSUM2 are fitted
from the posterior samples.

logL = log L(LAI) + logL(Y) (10)

where L(LAI) and L(Y) are the likelihood for LAI and
yield, and LAT and Y are WOFOST simulated LAI and yield
corresponding to the observed LAI and yield. X4 is the
covariance matrix for LAI. kpa; is the dimension of LAI.
o is the standard deviation of yield.

In this study, we perform the calibration at two scales.
For the point scale, we calibrate the WOFOST model with
the measured yield of the fields and the GLASS LAI data
from the corresponding pixels. The standard deviation of
the LAI for each period is assumed as 10% of the remote
sensing observation, i.e., Xy o1 = diag((LAI; x 10%)?, (LAI, x
10%)?, ..., (LAL, ,, x 10%)?), where LAI}, LAL, ..., LA, ,
are the elements in vector LAI. The field yield standard
deviation is 10% of the measurement. For the county scale,
we perform zonal statistics on GLASS LAI based on the
county boundary to obtain the frequency distribution of the
crop-masked pixel values. Then, the LAI s and X1 a1 can be
obtained by fitting the frequency distribution of the GLASS
LAI value to a normal distribution. And the standard deviation
of county yield is set as 10% of the statistical value.

D. Bayesian Posterior-Based EnKF

EnKF is developed based on the Kalman filter by storing,
propagating, and updating an ensemble of vectors to approx-
imate the state distribution. It is a sequential filtering method
used successfully in many nonlinear and non-Gaussian data-
assimilation applications [11], [37], [38], [39]. Usually, the
methods for the forecast ensemble initialization can be divided
into two categories. The first method generates the initial
ensemble by adding Gaussian perturbation to the model input
parameter, and the other directly adds Gaussian perturbation
to the model simulated state variable [6], [23]. However, these
two methods for perturbation are often experience-based and
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can lead to potential subjective errors. This study generates
the initial forecast ensemble from the model’s posterior pre-
dictions. Therefore, the corresponding steps of the Bayesian
posterior-based EnKF for assimilating GLASS LAI into the
WOFOST model can be described explicitly as follows.

1) Generate 500 ensembles of parameter posterior sam-
ples after the MCMC chains achieve convergence
in WOFOST model calibration. Thin the chains by
only using every tenth sample to decrease autocor-
relation [41]. Then, the 50 ensembles of posterior
predictions, i.e., the model simulated state vari-
ables corresponding to the posterior parameters,
are set as the initial forecast ensemble WS,
[Wo1,Woo, ..., Wonl, m =50 in this study.
Move the ensemble forward in time, i.e., from W Sj to
WS, t=1,2, 3, ..., until observations are available.
For time ¢, retrieve the target states LAI, from the
ensemble WS,, LAI, = [LAI ,LAL,,...,LAL ],
and the covariance matrix of the target states can be
estimated as P;. o
A /i()/—D eg@ble of o/bg:gvations, denoted as LAI,
[LAI,,,LAI,,...,LAI, ], can be generated by
adding a Gaussian perturbation with zero mean and a
covariance matrix of R; to the observations. In this
study, we perform data assimilation at spatial resolutions
of 250 m and 10 km, corresponding to the two different
calibration scales. Therefore, the determination of the
variance can also be divided into two cases. For data
assimilation of 250 m, i.e., the same resolution of
GLASS LAI, the standard deviation of the GLASS LAI
is set as 2.5% of the remote sensing observation. For that
of 10 km, i.e., the same resolution of AgERAS weather,
we perform zonal statistics on GLASS LAI based on the
10-km grid to obtain the frequency distribution of the
crop-masked pixel values within it. Then, the Gaussian
distribution of LAI observation can be fit.

The forecast state LAI, in WS, can be replaced by the
analyzed state denoted as LAI? as follows:

2)

3)

4)

K .= PH (HPH" +R)" (11)
LAIf = LAL + K, (LA, - HLAL)  (12)

where K is the Kalman gain, and H is the measurement oper-
ator which specifies the relationship between the simulated
state and the observed quantity. Since only one state variable,
i.e., LAI is used in this study, both the covariance matrices
P, and R, for forecast and observation states are 1-D, that
is, variance scalar P, and R,. And H is an identity matrix
because LAI is observed directly. Hence, (11) and (12) can be
rewritten as follows:

P,
K, — 13
‘=PI R (13)
LAI* = LAI, + K, (LAI, — LAI,) (14)

where K, is the Kalman gain, a scalar corresponding to P;
and R,. The model forecast ensemble W' S, is updated after the
above replacement. Note that some internal states in WOFOST
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related to the LAI must be changed during this process to keep
a balance of material and energy.

5) Repeat steps 2)—4) for the next analysis step until the
end of the growing season.

The Python scripts that implement the above process are
publicly available at https://github.com/paperoses/Bayesian-
posterior-based-EnKF.

IV. RESULTS AND ANALYSIS
A. Uncertainty Assessment of Phenological Parameters

The phenological parameters of the WOFOST model were
calibrated with the MCMC method for each agrometeoro-
logical station. In this study, the DREAM algorithm with
five parallel chains approximated the posterior distribution
of TSUMI and TSUM2. The R-statistic for the convergence
assessment was set as 1.01. As shown in Fig. 4, the likelihood
value quickly reaches a large value range and remains rela-
tively stable, and the convergence diagnostic is close to one
quickly with the MCMC chains running. This indicates that the
calibration of TSUM1 and TSUM2 is relatively easy to achieve
convergence. It can be seen that the two parameters are close
to the normal distribution, and the maximum likelihood value
falls in the high probability density area of the 2-D posterior
distribution as the prior is uniformly distributed. In addition,
from the perspective of the quantile, the uncertainty of TSUM2
is about twice that of TSUMI, which may be due to the
cumulative effect of the parameter uncertainty. Since TSUM1
and TSUM2 were calibrated simultaneously, but TSUM?2 is
estimated based on TSUMI, the uncertainty of TSUMI could
therefore be accumulated to that of TSUM2. The calibrated
results of each station were then applied to the corresponding
Thiessen polygon zones (Fig. 1) as the prior of crop phenology
and further jointly calibrated with other crop parameters.

B. Assimilating the GLASS LAI Into the WOFOST Model at
the Point Scale

In this section, we further calibrated the WOFOST model
for 24 fields with the field-measured yield and corresponding
GLASS LAI data of 2020 based on the phenological parame-
ters calibration results. The GLASS LAI data of 2021 during
the growth period were then assimilated into the calibrated
WOFOST model. We compared the estimated yield from
the standard EnKF method and the Bayesian posterior-based
EnKF method by validation with the field-measured yield of
2021. The fields used for calibration and validation are from
the exact locations but only in different years. In addition, the
percentages of 10-m winter wheat pixels within the 250-m
GLASS LAI pixels corresponding to the fields have been
verified to be greater than 50%, which ensures the reliability
of the remote sensing pixels for the representation of winter
wheat growth information.

1) Bayesian Posterior-Based EnKF: Nine parameters listed
in Table II were calibrated using the DREAM algorithm with
eight parallel chains and R-statistic convergence diagnostic
as 1.2. The posterior distribution of the selected parameters
is less regular (Fig. 5) compared with that of phenological
parameters calibration (Fig. 4). The reason for this is mainly
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Fig. 4. Representative result for phenological parameters calibration: (a) change of likelihood value with the number of iterations; (b) change of R-statistic
with the number of iterations; and (c) corner plot of the parameters’ posterior samples. The blue solid line indicates the maximum likelihood value. The black
dashed line to the left and right of the blue line indicates the 16% and 84% quantile corresponding to the label at the top of the subplots.
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Fig. 5. Representative result of the parameters’ posterior distribution from MCMC calibration at point scale (35.38°N, 113.66°E, Huixian, Henan). The blue
solid line indicates the maximum likelihood value. The black dashed line from left to right indicates the 16% quantile, mean value, and 84% quantile of the

posterior samples.

two aspects. On the one hand, these crop parameters or
parameter combinations have alternative roles for specific
effects in the WOFOST model. On the other hand, as the
dimension of the parameter space increases, the convergence
of MCMC sampling will be more difficult. Therefore, we set
a looser threshold. The correlation between some parameters
can be reflected in the 2-D distribution subgraph in Fig. 5;
for example, there is a negative correlation trend between
o_SLATB and «_v. This is because they have a certain degree

of equivalence to the LAI simulation, i.e., the «_SLATB has a
positive correlation with the specific leaf area, and «_v has a
positive effect on the fraction of total dry matter to leaves
(Table I). Therefore, these two parameters have a positive
regulatory effect on the LAI, calculated as the dry matter of
leaves multiplied by the specific leaf area in the WOFOST
model.

There can be several perspectives on the posterior uncer-
tainty results in Fig. 5. From the view of conventional point
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Fig. 6. Representative result of the WOFOST model’s uncertainty after MCMC calibration at point scale (35.38°N, 113.66°E, Huixian, Henan). MLE and
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Fig. 7. Estimated winter wheat yield accuracy at point scale: (a) open loop and (b) data assimilation. The bottom and top of the error bar correspond to the

16% and 84% quantiles.

estimation, we can obtain the samples’ mean value, maximum
likelihood estimation, or maximum posterior estimation as
the optimal-calibrated parameters set. Meanwhile, we can
calculate the quantiles of the parameters individually to infer
their distribution structure. The abovementioned treatments
can be helpful and effective for some applications of crop
growth models, but these views ignore the intrinsic correlation
of parameters. They only use the 1-D projection information of
the multidimensional parameter space, which is undoubtedly a
less effective use of MCMC posterior information. It is reason-
able to consider all posterior samples to obtain a corresponding
model ensemble of simulations or predictions. For example,
as shown in Fig. 6, the simulation ensemble corresponding to
all samples after convergence can be calculated and charac-
terize the uncertainty of the calibrated model, where, lo, 20,
and 30 cover 68%, 95%, and 99.7% of the ensemble intervals,
respectively. In the realm of data assimilation, quantitative
posterior uncertainty information is essential. For example,
these posterior samples can directly calculate the parameter
covariance matrix in the widely used 4-DVar data assimilation
system [7], [17]. Another popular data assimilation method,
EnKF, considers the uncertainty of the model in the form of

an ensemble of state variables. And the proposed Bayesian
posterior-based EnKF in this study is designed to combine the
MCMC posterior samples with the EnKF algorithm.

The Bayesian posterior-based EnKF method has dramat-
ically improved the yield estimation accuracy of the corre-
sponding 24 plots in 2021 as shown in Fig. 7. The open-loop
run was based on the same 50 samples ensemble as the
proposed Bayesian posterior-based EnKF method. The result
shows that when the MCMC calibrated crop growth model
parameters ensemble is directly used for the yield forecast,
i.e., in this study, the parameters calibrated from the dataset
of 2020 are used for predicting the crop yield of 2021,
relatively large errors could remain. However, assimilating the
within-season remote sensing observations could improve crop
model prediction accuracy while reducing uncertainty (Fig. 7).

We further compare the relationship between the WOFOST
ensemble simulations and observations for all fields. In gen-
eral, they can be divided into four cases, i.e., the model
LAI ensemble is generally higher than the remote sensing
LAI and the corresponding yield ensemble mean is higher
than the field observation (shorted as “high—high”); the model
LAI ensemble is generally lower than the remote sensing
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Fig. 8. Four relationship types between model and observation and their corresponding results of EnKF data assimilation. The division of the four quadrants
is based on the relative relationship between the open-loop model ensemble and the observation. For example, the first quadrant in the top right corner
indicates that the model LAI ensemble is higher than the remote sensing LAI as a whole and the yield ensemble mean (the blue cross) is higher than the
field observation. We refer to it as “high—high” for short. Similarly, the second, third, and fourth quadrants correspond to the types “low-high,” “low-low,”

and “*high—low.”.

LAI and the corresponding yield ensemble mean is higher
than the field observation (shorted as “low—high”); the model
LAI ensemble is generally lower than the remote sensing
LAI and the corresponding yield ensemble mean is lower
than the field observation (shorted as “low-low”); and the
model LAI ensemble is generally higher than the remote
sensing LAI, and the corresponding yield ensemble mean
is lower than the field observation (shorted as “high—low”),
as shown in Fig. 8. Although there is not necessarily a positive
correlation between yield and LAI from the perspective of
the WOFOST model mechanism, the results show that the
yield accuracy after EnKF data assimilation will be reduced
when the direction of the simulated LAI and yield deviate
from the corresponding observed value is inconsistent, i.e.,
the cases of “low—high” and “high—low.” On the contrary, for
the cases “high—high” and “low—low,” most of the estimated
yield accuracy after data assimilation is improved, and the
few decreases in accuracy because of the over-adjustment
of the yield estimation after data assimilation, e.g., a slight
overestimation becomes a relative serious underestimation.
Specifically, 83% of the fields can fall into the first or third

quadrants in Fig. 8, 75% of which increases in accuracy, so the
overall accuracy of all fields shown in Fig. 7 can be improved
after data assimilation.

2) Comparison With Standard EnKF: The posterior sample
of MCMC can provide lots of point estimates for model
calibration. Therefore, we can generate the model ensemble by
a manual Gaussian perturbation, apply the standard Gaussian
perturbation-based EnKF data assimilation framework [6],
[23], [42], and compare it with the Bayesian posterior-based
EnKF. In this study, based on the posterior mean estimate,
maximum likelihood estimate, and maximum posterior esti-
mate, we added five kinds of perturbations of 1%, 5%,
10%, 15%, and 20% to the parameters TDWI and SPAN,
respectively. The accuracy of all different treatments shown
in Table III is lower than that of the proposed Bayesian
posterior-based EnKF method with R? equal to 0.41 and mean
absolute percentage error (MAPE) equal to 7.82% (Fig. 7).
In addition, the results indicate that the posterior mean esti-
mate is the optimal point estimate for data assimilation with
Gaussian perturbation-based EnKF. The treatment based on
the posterior mean estimate and a Gaussian perturbation of



4401818

TABLE III

COMPARISON WITH STANDARD ENKF PROCEDURE BASED ON THE
COMBINATION OF THREE DIFFERENT POINTS ESTIMATING
AND FIVE DIFFERENT PERTURBATIONS

esg?lizlfes Perturbations ~ R? M(I(;)I))E (iglhsj)
1% 008 1341 1066
5% 035 849 719
P‘Ilslt:;:’r 10% 037 820 707
15% 038 820 708
20% 038 866 761
1% 003 1455 1207
5% 010  11.82 1022
Il\l’{:‘e’ﬂhmo‘;n(’l‘ 10% 018 10.19 933
15% 022 995 928
20% 022 1004 955
1% 002 1367 1094
5% 013 11.02 880
“gg;‘t‘gﬂ 10% 020 1001 822
15% 023 939 829
20% 024 946 817

10%—-15% achieves the highest accuracy with the coefficient
of determination R’ from 0.37 to 0.38 and the MAPE of
about 8.20% (Table III). The relatively better performance
with the posterior mean estimation may be because it contains
more information about the Bayesian high probability space
of the calibrated parameters. The apparent disadvantage of
the standard Gaussian perturbation-based EnKF is that the
model uncertainty of all data assimilation units is subjective
and invariant. However, the Bayesian posterior provides an
objective description of the model uncertainty individually,
which makes the data assimilation system more reasonable
and reliable.

C. Assimilating the GLASS LAI Into the WOFOST Model at
the Regional Scale

In this section, we further calibrated the model for the
counties in Henan with the county-level statistical yield and
corresponding GLASS LAI data within the county boundary
from 2017 to 2019 based on the phenological parameters
calibration results. The GLASS LAI data during the growth
period from 2018 to 2020 were then assimilated into the cali-
brated WOFOST model at the spatial resolution of 10 km, i.e.,
the same resolution as the AgGERAS weather data. Therefore,
we calculated the percentage of 10-m winter wheat pixels
within each 250-m GLASS LAI grid and fit the GLASS
LAI pixels with a purity of more than 50% to a Gaussian
distribution within each 10-km grid.
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1) Bayesian Posterior-Based EnKF: The county-level pos-
terior of MCMC calibration is similar to that of the point scale.
However, the posterior parameter ensemble is used for all
10-km winter wheat grids within the corresponding county.
The open-loop run of the WOFOST model is driven by
the current year’s weather data based on the crop parame-
ters calibrated by the previous year’s data. Limited by the
potential insufficient representativeness of model calibration
for different growth conditions, the open-loop simulations
[Fig. 9(a), (d), and (g)] can have large uncertainties because
of the differences in meteorological environment and man-
agement between the two years before and after. The data
assimilation recalibrated the state variables of the crop model
and improved yield simulations based on remote sensing
observations within the growth period. The simulations after
data assimilation [Fig. 9(b), (e), and (h)] have more consistent
spatial trends and additional details compared with the county
statistics [Fig. 9(c), (f), and (i)] even though the open-loop
simulations can have a large error. We aggregated the simu-
lation results at a 10-km resolution to the county scale, and
as shown in Fig. 10, simulated county-level yields after data
assimilation were in good agreement with statistical values.
Simulated county-level yield after data assimilation for 2018,
2019, and 2020 achieved R? values of 0.59, 0.67, and 0.42, and
RMSE values of 605, 658, and 812 kg-ha_l, respectively. The
MAPE value decreased from 13.24%, 30.15%, and 14.87%
of the open loop to 8.85%, 9.58%, and 12.06% of the
data assimilation, respectively. The overall results with the
Bayesian posterior-based EnKF for 2018-2020 show a 9.54%
improvement in accuracy based on the MAPE value compared
with the open-loop results. Considering that yield observations
corresponding to 10-km resolution are not available and only
winter wheat in high cropping density areas was selected,
the 10-km yield estimates cannot be directly and adequately
validated with the county statistics, but the improved accuracy
shown in Fig. 10 can still demonstrate to some extent the
validity of the proposed data assimilation method for regional
yield estimation.

2) Comparison With Standard EnKF: We compare the
proposed Bayesian posterior-based EnKF method with the
Gaussian perturbation-based EnKF method. Table IV shows
the results of the different Gaussian perturbations based on
the posterior mean estimate, which is the overall optimal
point estimate and contains the treatment with the highest
accuracy. The results show that our proposed method is overall
higher than the different comparison treatments, except for the
treatment of 10%—-15% Gaussian perturbation based on the
posterior mean estimate in 2018, which achieves R? values
of 0.58-0.61, MAPE values of 9.09-8.63, and RMSE values
of 594-596 kg-ha~!, and is slightly higher than the accuracy of
our proposed method with R? values of 0.59, MAPE values of
8.85%, and RMSE values of 605 kg-ha~!. It should be noted
that the Gaussian perturbation corresponding to the highest
accuracy is not the same for different years (Table IV), so in
practice, it is difficult to determine a fixed optimal perturbation
applicable to different years or areas. Our proposed method
provides adaptive model uncertainty based on the MCMC
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Fig. 9. Estimated winter wheat yield map. (a)-(c) Represent the yield map of open loop, data assimilation, and county statistic for the year 2018.
(d)—(f) Represent the yield map of open loop, data assimilation, and county statistic for the year 2019. (g)—-(i) Represent the yield map of open loop, data
assimilation, and county statistic for the year 2020. All yields are expressed in kg-ha=! dry weight.
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Fig. 10. Estimated winter wheat yield accuracy at county-level scale: (a)—(d) represent the accuracy of open-loop estimated yields for year-by-year and all
years from 2018 to 2020, respectively, and (e)-(h) are the corresponding accuracy of data assimilation.

algorithm and is, therefore, more universally applicable. From MAPE by 0.94%-11.00%, and RMSE by 46-653 kg-ha™!
the total results for 2018-2020 (Fig. 10 and Table IV), the compared with five different sets of Gaussian perturbation-
Bayesian posterior-based EnKF improved R? by 0.06-0.24, based EnKF based on the optimal point estimate.
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TABLE IV

COMPARISON WITH STANDARD ENKF FRAMEWORK BASED ON
THE POSTERIOR MEAN ESTIMATE AND FIVE DIFFERENT
GAUSSIAN PERTURBATIONS

Vear Gaussie}n 2 MAPE RMSE
perturbations (%) (kg-ha)
1% 0.41 13.19 821
5% 0.48 11.40 712
2018 10% 0.58 9.09 594
15% 0.61 8.63 596
20% 0.59 9.16 661
1% 0.50 32.21 1825
5% 0.63 27.23 1556
2019 10% 0.69 19.20 1134
15% 0.67 12.78 793
20% 0.63 10.13 672
1% 0.41 17.20 1157
5% 0.43 14.25 985
2020 10% 0.41 12.00 822
15% 035 12.55 816
20% 0.27 14.09 947
1% 0.33 21.13 1348
5% 0.40 17.86 1151
22%12% 10% 048  13.56 885
15% 0.51 11.30 741
20% 0.49 11.07 767

V. DISCUSSION

A. Advantages of MCMC Method for Crop Growth
Model Calibration

Calibration of crop growth models involves estimating
model parameters according to observations, including phe-
nological DVSs, leaf, biomass dynamics, and final yield.
Standard practices are often based on field measurements
or agronomic trial data under different control treatments.
However, at least part of such a dataset is often rarely available
for common model users. In contrast, the remotely sensed
LAI products and yield statistics used as the observational
dataset for parameter inference in this study are more readily
available. Fig. 11 shows the change of model parameters and
their uncertainty from the prior to the posterior under the
action of the observational likelihood. The posterior of the
parameters provides a comprehensive way to quantify model
uncertainty. But one problem that may arise is that there is
often an underestimation of crop LAI because remote sensing
LAI products are often not produced for specific crops. This
can cause the calibration values of parameters closely related
to LAI in the crop model to deviate to some extent from the
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Fig. 11. Comparison of prior, likelihood, and posterior distributions of param-
eters in the MCMC calibration process at point scale (35.38°N, 113.66°E,
Huixian, Henan). Note that the likelihood function is constructed based on
crop model outputs such as LAI and yield, and the likelihood of the model
parameters cannot be calculated directly. Therefore, the likelihood in the figure
is obtained by setting the model parameters to a uniform distribution and
then obtaining the parameter posterior based on the observation likelihood
and MCMC sampling.

reasonable interval (e.g., the «_TSUMI, «_SPAN, and §_DVS
in Fig. 11). In addition, an increasing number of datasets
on crop growth and development [43], [44] can be used for
crop growth model calibration. In practice, ideal parameter
calibration results can be obtained based on different methods
for cases with more and better data. However, in many cases,
the datasets used for calibration are inadequate and uncertain,
and complex process-based models usually have the equifinal-
ity problem, i.e., different parameter combinations have equal
performance for a given set of observations [45]. Therefore,
widely used approaches such as the search for the parameters
that minimize the sum of squared errors and maximum likeli-
hood function tend to be difficult to obtain reasonable param-
eter estimates. The Bayesian theory-based MCMC method
can infer the posterior distribution by combining the prior
information of the parameters and the observation likelihood.
Model calibration with the MCMC method can avoid param-
eter estimates beyond the explicit physiological and physi-
cal interpretation by setting a strongly information-bounded
prior distribution, such as the Gaussian distribution in this
study. This is particularly important when the observation is
insufficient (Fig. 11). Most importantly, the MCMC method
provides not only point estimates of the parameters but also
uncertainty information, including the covariance and quantile
of the parameters. In addition, the Bayesian posterior mean
is shown to be optimal as a point estimate in the standard
Gaussian perturbation-based EnKF framework, which is used
to compare with our proposed method. But in reality, less
than 10% of model users calibrate crop growth models based
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Fig. 12. Estimated 250-m regional winter wheat yield map of 2021.

on Bayesian approaches [45], so in practice, the standard
Gaussian perturbation-based EnKF may perform worse than
that shown in this study. This study focuses on obtaining
posterior samples of model parameters based on the MCMC
algorithm to improve the quantified estimation of model errors
in the EnKF algorithm. The results show that this allows
for improved data assimilation accuracy compared to the
empirical model error setting regionally. The method is also
helpful for model error quantification in other data assimilation
algorithms, e.g., the posterior samples of model parameters can
be used to calculate the covariance matrix of model parameters
in the 4-DVar algorithm.

B. Relationship Between the Point and Regional Scales

Theoretically, the calibration of the point scale in this
study can be used for regional yield estimation based on the
spatialization of parameters. For example, Thiessen polygons
can be generated from the sample points with field yield
observations, so that any location inside the polygon shares
the same calibrated parameters posterior as the field-level
point. We then assimilated the GLASS LAI into the WOFOST
model with the proposed framework for 250-m regional yield
estimation (Fig. 12). To a certain extent, spatial pattern in
yield variability in Fig. 12 is reasonable, for example, areas
with higher planting densities tend to have higher yields.
However, the sparse distribution or insufficient representation
of sampling points can cause large errors, especially the sig-
nificant differences between adjacent Thiessen polygon zones.
In this study, the point scale is used to verify the validity
of the proposed framework, as this does not involve scale
differences in yield. We estimated the regional yield by data
assimilation at 10-km grids based on county-level calibration
with only statistical yield and aggregated GLASS LAI data
considering the representativeness of the calibration and the
consistency of uncertainty quantification. The primary chal-
lenge for the regional application of our proposed framework
is the quantitative assessment of uncertainty in remote sensing
observations. We addressed this challenge by approximating
regional uncertainty through zonal statistics in both county
calibration and 10-km data assimilation. If regional pixel-
level uncertainty can be accurately quantified, our framework
can be used to estimate regional yield at the remote sensing
resolution [14].
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C. Model Simulation and Data Assimilation Under
Stress Conditions

As presented in Fig. 8, the data assimilation with remote
sensing LAI in this study improves the yield accuracy only
for the cases where the open-loop modeled yield errors and
LAI errors are in the same direction. An important reason
is that the simulated yield is closely related to multiple state
variables, yet adjusting the model state by LAI alone may
lead to over-adjustment or larger errors, especially when crop
growth is stressed by water or disaster, for example. Previous
studies have demonstrated the data assimilation of other vari-
ables, including soil moisture [46], evapotranspiration [47],
biomass [48], and gross primary production [l1], into crop
growth models for improving yield estimation. Further, simul-
taneous data assimilation of multiple state variables into the
crop growth model tends to provide more promising yield
accuracy [49], [50]. Therefore, assimilating remote sensing
LAI and other model state variables under water-limited or
nutrient-limited modes should be considered in future studies.

D. Filter Divergence Problem of EnKF

A common problem with the EnKF algorithm is the poor
representation of the covariance functions and the error covari-
ance matrix caused by the limited-size ensemble, leading
to under-estimated prediction uncertainty and possible filter
divergence, i.e., the Kalman gain is getting smaller and the
system tends to reject the observation in the later stages of data
assimilation [9]. The inflation approach is often used to avoid
this problem by offsetting excessive variance reduction in the
update [51]. To a certain extent, the inflation for the forecast
ensemble is a way to compensate for unknown model errors.
However, in this study, the model ensemble is generated by
different parameter sets sampled from the parameter posterior
in each ensemble member. The forward move of forecast
ensemble after each update contains information about the
model errors from the parameter posterior. Therefore, it is
no longer necessary to add additional inflation factors to
manually increase the prediction uncertainty. Specifically, filter
divergence is still a concern when the model ensemble is
generated by adding Gaussian perturbations directly to the
state variables. In future work, we still need to develop more
robust methods for data assimilation, such as hybrid algorithms
where model parameters and state variables can be updated
simultaneously [22].

VI. CONCLUSION

The accurate quantification of model uncertainty is signif-
icant for a successful data assimilation system. The widely
used methods including EnKF and 4-DVar algorithms assume
that the errors of the models are Gaussian distributed and
most studies can only give the errors based on subjective
experience. The proposed Bayesian posterior-based EnKF
framework in this study quantifies the model uncertainty
in data assimilation system with the satellite product and
Bayesian method. The proposed framework was applied with
GLASS 250-m LAI product and the WOFOST model at
point and regional scales in Henan. We first obtained the
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posterior prediction ensemble of the WOFOST model based
on the time-series GLASS LAI data and the field-measured
yield. We carried out data assimilation on the point-level
250-m grid using the GLASS LAI data within the critical
growth period in the following year. The results showed that
the accuracy of yield estimation with data assimilation was
significantly improved compared with open-loop simulation,
with R? increasing from 0.06 to 0.41, MAPE decreasing
from 12.65% to 7.82%, and RMSE decreasing from 987 to
688 kg-ha~!. Similarly, we estimated winter wheat yield at
10-km spatial resolution based on county statistical yield and
zonal statistical values of GLASS LAI The results show that
the simulated yields were in better agreement with county
statistical values with R? values of 0.57, MAPE values of
10.13%, and RMSE values of 695 kg-ha~! compared with the
open-loop simulation. Moreover, the Bayesian posterior-based
EnKF applied to both scales performs better overall than the
standard EnKF method, with the model error estimated based
on the Gaussian perturbation. This study shows that crop yield
estimation can be significantly improved by better quantifying
the crop growth model errors in the data assimilation system.
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